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1. Introduction

The recent deployment of multiparameter, polari-
metric radars provides the impetus for development of
microphysical retrievals. The primary objective of this
paper is to describe a particle classification technique
that makes use of polarimetric radar observations. The
particle classification technique is computationally
simple enough to be implemented for real-time re-
search and operational field programs. Also, when the
NEXRAD (Next Generation Weather Radar) is up-
graded to dual-polarization capability, operational ra-
dar meteorologists might be able to merge kinematic
(Doppler data) and microphysical characteristics (po-
larization radar data) to improve forecasts. One of the
merits of the technique described in this paper is that
a radar meteorologist may not be required to know the
complicated details and the intricacies of interpreting the
data associated with polarimetric radar data processing.

Several studies have shown that polarimetric
observables (both linear and circular) can be used to
identify hydrometeor types (Aydin et al. 1986; Doviak
and Zrnic 1993; Hall et al 1984; Hendry and Antar
1984; Lopez and Aubagnac 1997; Straka and Zrnic
1993). Hendry and Antar (1984) used circular polar-
ization measurements for delineating the major pre-
cipitation types such as drizzle, rain, melting layer,
snowflakes, ice crystals, and ice pellets. However, rain
or anisotropic precipitation in the propagation path
between the antenna and the radar resolution volume
introduces more bias in circular polarization radar
measurements than in the case of linear polarization
(Doviak and Zrnic 1993). Linear polarimetric radars,
like the one used in this study, transmit and receive
both horizontally and vertically polarized radiation,
providing more information about the scattering me-
dia than conventional radar. Polarimetric radar
observables depend on the microphysical characteris-
tics of hydrometeors; namely, (a) particle size, (b)
particle shape, (c) particle orientation relative to the
local vertical direction, (d) phase (liquid or ice), and
(e) bulk density (wet, dry, aggregate, or rimed). In
addition to traditional reflectivity (Z

HH
) and Doppler

measurements, linear polarimetric observables include
differential reflectivity (Z

DR
), linear depolarization ra-

tio (LDR), specific differential propagation phase
(K

DP
), and correlation coefficient (ρ

HV
). Reflectivity is

related to the power of a horizontally polarized
backscattered electric field from a radar resolution
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ABSTRACT

Recent studies have shown the utility of polarimetric radar observables and derived fields for discrimination of hy-
drometeor particle types. Because the values of the radar observables that delineate different particle types overlap and
are not sharply defined, the problem is well suited for a fuzzy logic approach. In this preliminary study the authors have
developed and implemented a fuzzy logic algorithm for hydrometeor particle identification that is simple and efficient
enough to run in real time for operational use. Although there are no in situ measurements available for this particle-type
verification, the initial results are encouraging. Plans for further verification and optimization of the algorithm are described.
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volume for a horizontally polarized transmitted wave
(copolar). Reflectivity is the sixth moment of the par-
ticle size distribution when particle size is small com-
pared to the wavelength. Differential reflectivity is the
ratio of the horizontal copolar return to the vertical
copolar return and can be interpreted as the reflectivity
weighted mean-axis ratio of the precipitation particle
in the radar resolution volume (Jameson 1983). Thus,
Z

DR
 (in combination with reflectivity) is a good dis-

criminator between oblate rain (high Z
DR

) and more
spherical hail (low Z

DR
). The rain medium is typically

characterized by Z
DR

 ≥ 0.5 dB and Z
HH

 ≤  60 dBZ; and
hail by Z

DR
 ≈ 0 dB or even slightly negative, while Z

HH

is ≥ 45 dBZ (Aydin et al. 1986; Doviak and Zrnic 1993;
Lopez and Aubagnac 1997; Straka and Zrnic 1993).
Based on these findings, the anticorrelated pattern be-
tween Z

DR
 and reflectivity has been used for hail de-

tection (Aydin et al. 1986; Bringi et al. 1986). Linear
depolarization ratio is the ratio between vertically
polarized power backscattered for a horizontally po-
larized transmitted wave and copolar backscattered
power. Tumbling, wet nonspherical particles such as
hail, melting aggregates, wet graupel, and bright band
due to melting (Vivekanandan et al. 1990; Zrnic et al.
1993) are identified with large LDR values whereas
light rain, cloud droplets, and dry ice particles are as-
sociated with low LDR values. Specific differential
propagation phase is the difference in phase per kilo-
meter of the received horizontal and vertical polarized
waves. It is almost linearly proportional to rain rate and
ice water content (Sachidananda and Zrnic 1986;
Vivekanandan et al. 1994). Here, K

DP
 can be used to

identify nonspherical particles, such as ice crystals and
raindrops. A combination of specific differential
phase, reflectivity, and Z

DR
 can be used for inferring

rain intensity and mixed-phase characteristics
(Balakrishnan and Zrnic 1990). Vivekanandan et al.
(1994) describe a method for delineating regions of
pristine ice crystal and snow using Z

HH
 and Z

DR
 obser-

vations. The correlation coefficient between copolar
returns is denoted as ρ

HV
. Values of ρ

HV
 are close to

unity for rain and pure ice crystals. In the case of melt-
ing and mixed phase (rain and hail or graupel) condi-
tions, ρ

HV
 is smaller than unity because of the

variability in scattering characteristics of precipitation
particles for a given size. Low values of ρ

HV
 may be

used for detecting hail and mixed phase.
Typical thresholds of polarimetric observables for

various precipitation types are listed in Table 8.1 of
Doviak and Zrnic (1993). These thresholds are based
on model computation and limited comparison of ra-

dar measurements with in situ aircraft and ground
observations. Using some of these thresholds, Lopez
and Aubagnac (1997) developed an algorithm to iden-
tify regions of liquid, frozen (hail and graupel only),
and mixed-phase precipitation Z

HH
 and K

DP
. They then

used Z
HH

 and Z
DR

 to differentiate among graupel, small
hail, and large hail and to investigate the relations
among liquid particles, frozen particles, and lightning
frequency in thunderstorms. Straka and Zrnic (1993)
proposed a method, also based on the thresholds of
Doviak and Zrnic (1993), using Z

HH
, Z

DR
, ρ

HV
, K

DP
,

LDR knowledge of the freezing level in cloud, and
electromagnetic scattering models to alleviate ambi-
guities in hydrometeor types and quantities. It was
proposed that accurate microphysical retrievals
could improve numerical weather prediction (Sun
and Crook 1997). Holler et al. (1994) developed a
“semiempirical” hydrometeor discrimination algo-
rithm using thresholds of Z

DR
 and LDR and an esti-

mate of the melting level. They used their method to
study the life cycle of hail in a convective storm.

Notice that each of the above-discussed techniques
uses thresholds, or hard boundaries to identify particle
classes. The use of hard boundaries can lead to
misclassification because there is a fair amount of
overlap between polarimetric observables for various
precipitation types. Boundaries between polarimetric
observables are “fuzzy” as shown below.

2. Fuzzy logic method

Probabilistic and fuzzy logic methods share many
similarities. Both systems describe uncertainty nu-
merically in the interval between 0 and 1. In a proba-
bilistic method, the intersection between a set and its
complement is a null set, but it may not be a null set
in the case of a fuzzy logic method. For example, rain
and no rain regions might contain mixed phase par-
ticles, such as melting ice particles or rain and hail
mixtures. Thus, there is fuzziness or a nonempty set
between an object and its opposite. Objects or events
that exhibit fuzziness are classified as fuzzy sets.
Further details on the key differences between proba-
bilistic and fuzzy logic methods are discussed in
Kosko (1994). The fuzzy boundaries between polari-
metric observables are ideally suited for a fuzzy logic-
based particle classification approach. In a fuzzy
logic–based approach there is a smooth transition in
polarimetric observable boundaries among precipita-
tion types. Figure 1 shows a conceptual model of a
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fuzzy logic technique for detecting
rain and hail using Z

HH
, Z

DR
, and

LDR. Membership functions for Z
HH

,
Z

DR
, and LDR define the boundary be-

tween the rain and hail regions and are
formulated based on their typical val-
ues. For particular values of Z

HH
, Z

DR
,

and LDR, membership functions
determine the degree to which an ob-
servation belongs to each of the ap-
propriate fuzzy sets, that is, rain and
hail (see Fig. 1). An anticorrelated
pattern between Z

HH
 and Z

DR
 for hail

is reflected in the membership func-
tion curves. Both Z

HH
 and Z

DR
 tend to

be higher in heavy rain than light rain.
Linear depolarization for hail is
greater than the corresponding values
for rain regions. Because they allow
for varying values of membership,
membership functions are more real-
istic than a single-valued threshold.
The shape of membership functions is
determined using information obtained from various
studies using polarimetric radar model computations
(Bringi et al. 1986; Jameson 1983), joint analysis
results using aircraft (Doviak and Zrnic 1993;
Holler et al. 1994; Vivekanandan et al. 1990; Zrnic
et al. 1993), disdrometer (Aydin et al. 1986), and ra-
dar measurements (Balakrishnan and Zrnic 1990;
Vivekanandan et al. 1994). Since the technique is
based on a fuzzy logic method that makes use of the
number of input variables, the particle classification
might be insensitive to the fine details in the mem-
bership functions. The proposed membership func-
tions would be tuned and adjusted as we acquire more
polarimetric datasets with in situ observations.

Consider the simplified example illustrated in
Fig. 1. Using membership functions to determine the
degree to which each input (here, Z

HH
, Z

DR
, and LDR)

belongs to each fuzzy set (here, rain and hail) is called
“fuzzification” of input. Fuzzification results in a num-
ber between 0 and 1 for each input corresponding to
each of the fuzzy sets. The results of fuzzification (i.e.,
P

i
ZHH, P

i
ZDR, P

i
LDR) are multiplied by a predetermined

weight (W
j
), the value of which is based on the use-

fulness for particle classification and the measurement
accuracy of the input variable. The weighted results
of the fuzzification (P

i
j W

j
) are summed to produce a

single value for each of the fuzzy sets Q
i
, (i.e., the par-

ticles rain and hail). This unification of fuzzy outputs

for all the fuzzy-set rules is called aggregation. The
fuzzy outputs of the aggregation process (Q

i
) are then

defuzzified using a function that determines the maxi-
mum among the fuzzy sets. The fuzzy set with the
maximum value is identified as the particle type for
the given Z

HH
, Z

DR
, and LDR values.

The mathematical operations involved in the
above-described fuzzy logic procedure are (i) a lookup
table for the membership functions to fuzzify the in-
put, (ii) multiplication and addition for the aggrega-
tion procedure, and (iii) finding the maximum among
aggregated values for defuzzification, that is,
precipitation-type identification. The simplicity and
efficiency of the method allows for real-time calcu-
lation and display of hydrometeor discrimination.
Also, it is straightforward and easily modified for the
optimization of particular radars and applications.
Classification based on multiple one-dimensional
membership functions has been demonstrated by
Straka (1996) with examples of hydrometeor fields
that conform to accepted conceptual models.

The software used to generate the particle identi-
fication can read the real-time radar data from the
S-Pol radar (Lutz et al. 1997) and translator routines
convert the data into the proper format for processing
and display. Each radar resolution volume in the ra-
dar space is classified into one of the 15 particle types
as shown in Fig. 2. For clarity of presentation and vi-

FIG. 1. An example of a fuzzy logic particle identification algorithm. For each
variable, all of the particles receive a value between 0 and 1 from the respective
membership function (fuzzification). These values (P) are then multiplied by the ap-
propriate weight (W) and summed for each particle. The maximum of the weighted
sums is then found to determine the particle type.
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sualization, each particle type is color coded and the
result is displayed in the same format as the radar scan
(i.e., RHI, PPI, or surveillance). In the case of a long

propagation path through rain, polarimetric radar mea-
surements (especially at frequencies higher than
3 GHz) are biased by attenuation and differential at-

FIG. 2. (a) A plot of reflectivity vs Z
DR

 for regions of liquid drops and hail. The spread in Z
DR

, due to the variability in drop size
distribution, is bounded by black lines. (b) As in Fig. 2a with regions denoting 15 different hydrometer classes in color code. The
overlap between particles in the Z, Z

DR
 plane is noteworthy. (c) Two-dimensional membership function in Z

HH
/K

DP
 space. Boundaries

of 15 different hydrometer types are shown.
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tenuation due to rain and mixed-phase conditions.
Using simple power relationships betwen K

DP
 and at-

tenuation (Bringi et al. 1990), the bias due to propa-
gation effects in rain can be corrected.

3. Two-dimensional membership
function

The most important element in fuzzy logic–based
classification is the membership functions. Among all
of the radar measurements, reflectivity is the most
widely used observation for studying precipitation.
Therefore, and because the partition of the planes Z

HH

and X (where X stands for any of the polarimetric vari-
ables such as Z

DR
, K

DP
, LDR, and ρ

HV
) into regions of

hydrometeor types is well understood, we have con-
structed two-dimensional membership functions in
this space. The two dimensions are reflectivity and one
of the polarimetric variables; the value of the mem-
bership function varies between 0 and 1 in the speci-
fied region. Boundaries between liquid droplets and
hail in the Z

HH
–Z

DR
 plane are sketched in Fig. 3a. The

region bounded by solid black lines corresponds to the
range of Z

DR
 values of liquid droplets for a given value

of Z
HH

. Natural variability in raindrop size distribution
introduces scatter between Z

HH
 and Z

DR
 (Chandrasekar

and Bringi 1988); therefore, there is a fair amount of
overlap between Z

HH
 and Z

DR
 values for various rain

intensities. Figure 3b shows boundaries for all 15 dif-
ferent precipitation classes using Z

HH
 and Z

DR
.

Figure 3c is similar to Fig. 3b except precipitation
boundaries are shown in the Z

HH
–K

DP
 plane.

To facilitate simpler implementation of member-
ship functions, the two-dimensional functions are de-
composed into a multitude of one-dimensional
functions as follows. For a given Z

HH
, the membership

function is unity in regions bounded by a polarimet-
ric variable; at the edge of the regions the member-
ship function linearly decreases to zero. Thus, the
profile of the membership function for a constant
Z

HH
 is a trapezoid bracketing the appropriate values

of the polarimetric variable. Trapezoidal membership
functions are formulated for every 2-dB increment in
reflectivity values of each particle category to gener-
ate each of the two-dimensional membership func-
tions of Z

HH
–Z

DR
, Z

HH
–K

DP
, Z

HH
–LDR, and Z

HH
–ρ

HV
.

Reflectivity and temperature (T) membership func-
tions are one-dimensional. Proximity sounding data
are used to obtain the temperature profile. The tem-
perature membership function is nonzero only if the

observed reflectivity is within the permissible range
of reflectivity for the corresponding particle type.

The six different observations (Z
HH

, Z
DR

, K
DP

, LDR,
ρ

HV
, and T) are fuzzified using the corresponding

membership functions. The fuzzification results are
multiplied by weights determined subjectively by the
general accuracy of the variable and how well the vari-
able indicates different particle types. Currently the
weights for Z

HH
, Z

DR
, and T are twice the weights for

K
DP

, LDR, and ρ
HV

; however, we plan to optimize the
weights as we gain experience with the algorithm. The
six weighted results of the fuzzification are summed
to produce a single aggregated value for each of the
15 particle types. The particle type with the maximum
aggregated value is identified as the dominant particle
type for the given Z

HH
, Z

DR
, K

DP
, LDR, ρ

HV
, and T

observation.

4. Results of particle classification

In the spring of 1997, S-Pol was deployed near
Wichita, Kansas, as part of the Cooperative Atmo-
spheric Surface Exchange Study (CASES-97). The
experiment was performed to study the exchange of
energy, moisture, polarimetric radar-based precipita-
tion estimation, and trace chemicals between the land
and atmosphere in the Walnut Creek watershed in
Kansas (LeMone et al. 1998). On 13 June 1997, S-Pol
recorded data of a severe thunderstorm to the east of
the radar. RHI scans of Z

HH
, Z

DR
, and the correspond-

ing particle classification results are shown in
Figs. 2a–c, respectively. The storm extends to 16 km
in height and has a well-defined anvil, an overshoot-
ing top, and a weak echo region. The storm persisted
for 90 min beyond the time of the RHI’s shown in
Fig. 2.

The spatial variation in Z
HH

 and Z
DR

 shown in Fig. 2
suggests the existence of a variety of particle types.
As expected, the high reflectivity and low Z

DR
 regions

are classified as hail by the fuzzy logic–based tech-
nique (Fig. 2c). There were reports of large hail asso-
ciated with this cell near the time of the observation
filed by the National Weather Service. However, no
in-cloud aircraft measurements were available for
verification. Regions with moderate reflectivity and
Z

DR
 > 0.5 dB were identified as light (< 10 mm h−1),

moderate (< 40 mm h−1), and heavy (> 40 mm h−1) rain
intensities. Rain–hail and graupel–rain mixed precipi-
tation types were detected below hail regions and
above rain regions. This is gratifying since raindrops
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may be produced by hail–graupel melting as it de-
scends, along with water-shedding processes. Also,
hail has a higher fall speed than raindrops and may
fall through regions of rain. Graupel–small hail was
identified just above the hail region. Above freezing
level, the low reflectivity (< 30 dBZ) pixels were clas-

sified as dry snow, irregular ice crystals, ice crystals,
or supercooled liquid droplets. These small ice par-
ticles are found mostly in the anvil and near the top
of the storm as would be expected. Below the freez-
ing level, low reflectivity values were classified as
drizzle or cloud drops. It is noteworthy that a layer of
high Z

DR
 (> 5 dB), with a low-reflectivity region to the

left of the precipitation echo, is classified as insects
(Wilson et al. 1994).

5. Conclusions

The fuzzy logic–based method described above
makes use of a smooth transition in polarimetric ob-
servable boundaries among precipitation types instead
of simple thresholds. The mathematical operations
involved are simple, linear, algebraic operations, and,
hence, the particle classification procedure can be
implemented for real-time applications. Also, the
method is robust enough that its performance may not
be adversely affected due to typical measurement er-
ror in some of the input variables. Alternate methods
such as the statistical decision theory method and neu-

(a) (b)

(c)
FIG. 3. RHI scans of (a) Z

HH
, (b) Z

DR
, and (c) the correspond-

ing particle classification results (the dashed line denotes the freez-
ing level). The radar measurements were collected by the NCAR
S-Pol radar during the CASES-97 field program.
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ral network approach are not feasible at the moment
because of the limitation on in situ microphysical pre-
cipitation data in conjunction with polarization radar
measurements. The lack of in situ microphysical data
is a limiting factor for training neural networks and
also for obtaining the required statistical decision
theory–based approaches. Results of the fuzzy logic–
based particle classification approach show important
aspects of the microphysical structure of a typical con-
vective thunderstorm. The boundaries between vari-
ous precipitation types are defined using reflectivity
and polarimetric radar observables. Even though re-
flectivity, Z

DR
 and temperature profile play an

important role in particle identification, the other po-
larimetric variables are needed for classifying mixed-
phase precipitation.

Quantification of the precipitation amounts can be
improved using the results of particle classification.
Power-law relationships that are used for precipitation
estimation can be modified based on particle type to
obtain better accuracy. Also, assimilation of radar-
derived cloud microphysics into cloud models will
improve the initial conditions of a numerical storm
forecast (Sun and Crook 1997). The particle-type
identification program has been incorporated into
the S-Pol radar precipitation product package and dis-
plays the results in real time. We plan to verify and
improve the particle classification technique using ob-
servations collected by cloud physics aircraft during
the Florida component of TRMM/Texas and Florida
Underflights (TEFLUN-B). We envision that particle
classification would also identify convective and
stratiform regions in clouds. The separation of cloud
systems into convective and stratiform is one of the
primary objectives of TRMM for obtaining four-
dimensional structures of latent heating in the atmo-
sphere (Simpson 1988).
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