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ABSTRACT

Recent studies have shown the utility of polarimetric radar observables and derived fields for discrimination of hy-
drometeor particle types. Because the values of the radar observables that delineate different particle types overlap and
are not sharply defined, the problem is well suited for a fuzzy logic approach. In this preliminary study the authors have
developed and implemented a fuzzy logic algorithm for hydrometeor particle identification that is simple and efficient
enough to run in real time for operational use. Although there are no in situ measurements available for this particle-type
verification, thanitial results are encouraging. Plans for further verification and optimization of the algorithm are described.

1. Introduction Several studies have shown that polarimetric
observables (both linear and circular) can be used to
The recent deployment of multiparameter, polatidentify hydrometeor types (Aydin et al. 1986; Doviak
metric radars provides the impetus for developmentarid Zrnic 1993; Hall et al 1984; Hendry and Antar
microphysical retrievals. The primary objective of thi$984; Lopez and Aubagnac 1997; Straka and Zrnic
paper is to describe a particle classification techniqli@93). Hendry and Antar (1984) used circular polar-
that makes use of polarimetric radar observations. Tihation measurements for delineating the major pre-
particle classification technique is computationallgipitation types such as drizzle, rain, melting layer,
simple enough to be implemented for real-time renowflakes, ice crystals, and ice pellets. However, rain
search and operational field programs. Also, when theanisotropic precipitation in the propagation path
NEXRAD (Next Generation Weather Radar) is ugetween the antenna and the radar resolution volume
graded to dual-polarization capability, operational rastroduces more bias in circular polarization radar
dar meteorologists might be able to merge kinemaiieasurements than in the case of linear polarization
(Doppler data) and microphysical characteristics (pfldoviak and Zrnic 1993). Linear polarimetric radars,
larization radar data) to improve forecasts. One of tlilee the one used in this study, transmit and receive
merits of the technique described in this paper is thmith horizontally and vertically polarized radiation,
a radar meteorologist may not be required to know theoviding more information about the scattering me-
complicated details and the intricacies of interpreting tiska than conventional radar. Polarimetric radar
data associated with polarimetric radar data processioservables depend on the microphysical characteris-
tics of hydrometeors; namely, (a) particle size, (b)
particle shape, (c) particle orientation relative to the
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volume for a horizontally polarized transmitted wavear measurements with in situ aircraft and ground
(copolar). Reflectivity is the sixth moment of the pawebservations. Using some of these thresholds, Lopez
ticle size distribution when particle size is small conand Aubagnac (1997) developed an algorithm to iden-
pared to the wavelength. Differential reflectivity is théfy regions of liquid, frozen (hail and graupel only),
ratio of the horizontal copolar return to the verticaind mixed-phase precipitatidy, andK .. They then
copolar return and can be interpreted as the reflectivityedZ ,, andZ__ to differentiate among graupel, small
weighted mean-axis ratio of the precipitation particleail, and large hail and to investigate the relations
in the radar resolution volume (Jameson 1983). Thaspong liquid particles, frozen particles, and lightning
Z_ ., (in combination with reflectivity) is a good dis-frequency in thunderstorms. Straka and Zrnic (1993)
criminator between oblate rain (high.) and more proposed a method, also based on the thresholds of
spherical hail (lowz__). The rain medium is typically Doviak and Zrnic (1993), using,,, Z,., f,,» Ky
characterized b¥ > 0.5 dB an&,, < 60 dBZ; and LDR knowledge of the freezing level in cloud, and
hail byZ__= 0 dB or even slightly negative, whife,,  electromagnetic scattering models to alleviate ambi-
is=45 dBzZ (Aydin et al. 1986; Doviak and Zrnic 1993guities in hydrometeor types and quantities. It was
Lopez and Aubagnac 1997; Straka and Zrnic 1998yoposed that accurate microphysical retrievals
Based on these findings, the anticorrelated pattern beuld improve numerical weather prediction (Sun
tweenZ__ and reflectivity has been used for hail deand Crook 1997). Holler et al. (1994) developed a
tection (Aydin et al. 1986; Bringi et al. 1986). Lineatsemiempirical” hydrometeor discrimination algo-
depolarization ratio is the ratio between verticalljthm using thresholds &, and LDR and an esti-
polarized power backscattered for a horizontally pazate of the melting level. They used their method to
larized transmitted wave and copolar backscattergtidy the life cycle of hail in a convective storm.
power. Tumbling, wet nonspherical particles such as Notice that each of the above-discussed techniques
hail, melting aggregates, wet graupel, and bright banskes thresholds, or hard boundaries to identify particle
due to melting (Vivekanandan et al. 1990; Zrnic et @llasses. The use of hard boundaries can lead to
1993) are identified with large LDR values whereasisclassification because there is a fair amount of
light rain, cloud droplets, and dry ice particles are asverlap between polarimetric observables for various
sociated with low LDR values. Specific differentiaprecipitation types. Boundaries between polarimetric
propagation phase is the difference in phase per kitdservables are “fuzzy” as shown below.
meter of the received horizontal and vertical polarized
waves. Itis almost linearly proportional to rain rate and
ice water content (Sachidananda and Zrnic 198%; Fuzzy logic method
Vivekanandan et al. 1994). Hei€,  can be used to
identify nonspherical particles, such as ice crystals and Probabilistic and fuzzy logic methods share many
raindrops. A combination of specific differentiakimilarities. Both systems describe uncertainty nu-
phase, reflectivity, and__ can be used for inferringmerically in the interval between 0 and 1. In a proba-
rain intensity and mixed-phase characteristidslistic method, the intersection between a set and its
(Balakrishnan and Zrnic 1990). Vivekanandan et alomplement is a null set, but it may not be a null set
(1994) describe a method for delineating regions iofthe case of a fuzzy logic method. For example, rain
pristine ice crystal and snow usidg, andZ__ obser- and no rain regions might contain mixed phase par-
vations. The correlation coefficient between copoléicles, such as melting ice particles or rain and hail
returns is denoted gs,,. Values ofp,,, are close to mixtures. Thus, there is fuzziness or a nonempty set
unity for rain and pure ice crystals. In the case of meltetween an object and its opposite. Objects or events
ing and mixed phase (rain and hail or graupel) condlrat exhibit fuzziness are classified as fuzzy sets.
tions, p,, is smaller than unity because of th&urther details on the key differences between proba-
variability in scattering characteristics of precipitatiohilistic and fuzzy logic methods are discussed in
particles for a given size. Low valuesmf, may be Kosko (1994). The fuzzy boundaries between polari-
used for detecting hail and mixed phase. metric observables are ideally suited for a fuzzy logic-
Typical thresholds of polarimetric observables fdyased particle classification approach. In a fuzzy
various precipitation types are listed in Table 8.1 tfgic—based approach there is a smooth transition in
Doviak and Zrnic (1993). These thresholds are bagsalarimetric observable boundaries among precipita-
on model computation and limited comparison of réien types. Figure 1 shows a conceptual model of a
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fuzzy logic technique for detecting "

rain and hail usingZHH, ZDR, and Hail P: Meml)ers!lip value
LDR. Membership functions fat,, - Q: Aggregation value
Z, .. and LDR define the boundary be- | —r \J

tween the rain and hail regions and art

Reflectivity

formulated based on their typical val- |
ues. For particular values8f,, Z_., |
and LDR, membership functions

determine the degree to which an ob

servation belongs to each of the ap, |
propriate fuzzy sets, that is, rain and -
hail (see Fig. 1). An anticorrelated ,, ——
pattern betweed,, andZ_, for hail i s pron
is reflected in the membership func-
tion curves. Botlz,,, andZ  tendto |
be higher in heavy rain than light rain.» =====
Linear depolarization for hail is LOR

greater than the corresponding values Fic. 1. An example of a fuzzy logic particle identification algorithm. For each
for rain regions. Because they allowariable, all of the particles receive a value between 0 and 1 from the respective
for varying values of membership’meml_:)ership_function (fuzzification). These valt_lé)sa(re then m_ultiplied by the ap-
membership functions are more rearqroprlate weight\(¥) and summed for each particle. The maximum of the weighted

.. . sums is then found to determine the particle type.
istic than a single-valued threshold. P P

The shape of membership functions is
determined using information obtained from variodsr all the fuzzy-set rules is called aggregation. The
studies using polarimetric radar model computatiofiszzy outputs of the aggregation proce3$ ére then
(Bringi et al. 1986; Jameson 1983), joint analysiefuzzified using a function that determines the maxi-
results using aircraft (Doviak and Zrnic 1993mum among the fuzzy sets. The fuzzy set with the
Holler et al. 1994; Vivekanandan et al. 1990; Zrnimaximum value is identified as the particle type for
etal. 1993), disdrometer (Aydin et al. 1986), and rthe givenZ,,, Z__, and LDR values.
dar measurements (Balakrishnan and Zrnic 1990; The mathematical operations involved in the
Vivekanandan et al. 1994). Since the technigueabove-described fuzzy logic procedure are (i) a lookup
based on a fuzzy logic method that makes use of thble for the membership functions to fuzzify the in-
number of input variables, the particle classificatiqout, (i) multiplication and addition for the aggrega-
might be insensitive to the fine details in the mention procedure, and (iii) finding the maximum among
bership functions. The proposed membership fureggregated values for defuzzification, that is,
tions would be tuned and adjusted as we acquire mprecipitation-type identification. The simplicity and
polarimetric datasets with in situ observations.  efficiency of the method allows for real-time calcu-
Consider the simplified example illustrated itation and display of hydrometeor discrimination.
Fig. 1. Using membership functions to determine tiAdso, it is straightforward and easily modified for the
degree to which each input (heZg,, Z,., and LDR) optimization of particular radars and applications.
belongs to each fuzzy set (here, rain and hail) is calléthssification based on multiple one-dimensional
“fuzzification” of input. Fuzzification results in a num-membership functions has been demonstrated by
ber between 0 and 1 for each input correspondingStraka (1996) with examples of hydrometeor fields
each of the fuzzy sets. The results of fuzzification (i.¢hat conform to accepted conceptual models.
P 4w, P%r, PPR) are multiplied by a predetermined The software used to generate the particle identi-
weight (), the value of which is based on the uséication can read the real-time radar data from the
fulness for particle classification and the measureméPol radar (Lutz et al. 1997) and translator routines
accuracy of the input variable. The weighted resultenvert the data into the proper format for processing
of the fuzzification P/ W) are summed to produce and display. Each radar resolution volume in the ra-
single value for each of the fuzzy s@s(i.e., the par- dar space is classified into one of the 15 particle types
ticles rain and hail). This unification of fuzzy outputas shown in Fig. 2. For clarity of presentation and vi-
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Fic. 2. (a) A plot of reflectivity v&Z _ for regions of liquid drops and hail. The spread jn due to the variability in drop size
distribution, is bounded by black lines. (b) As in Fig. 2a with regions denoting 15 different hydrometer classes in coltiecode.
overlap between particles in theZ, plane is noteworthy. (c) Two-dimensional membership functi@h jfK_, space. Boundaries
of 15 different hydrometer types are shown.

sualization, each particle type is color coded and thepagation path through rain, polarimetric radar mea-
result is displayed in the same format as the radar ssanements (especially at frequencies higher than
(i.e., RHI, PPI, or surveillance). In the case of a lor®§GHz) are biased by attenuation and differential at-
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tenuation due to rain and mixed-phase conditiorsbserved reflectivity is within the permissible range
Using simple power relationships betw&n and at- of reflectivity for the corresponding particle type.
tenuation (Bringi et al. 1990), the bias due to propa- The six different observationg (, Z, ., K., LDR,
gation effects in rain can be corrected. P, andT) are fuzzified using the corresponding
membership functions. The fuzzification results are
multiplied by weights determined subjectively by the
3. Two-dimensional membership general accuracy of the variable and how well the vari-
function able indicates different particle types. Currently the
weights forZ, , Z ., andT are twice the weights for
The most important element in fuzzy logic-basef ., LDR, andp,; however, we plan to optimize the
classification is the membership functions. Among alleights as we gain experience with the algorithm. The
of the radar measurements, reflectivity is the masik weighted results of the fuzzification are summed
widely used observation for studying precipitationo produce a single aggregated value for each of the
Therefore, and because the partition of the plapes 15 particle types. The particle type with the maximum
andX (whereX stands for any of the polarimetric variaggregated value is identified as the dominant particle
ables such ag , K, LDR, andp, ) into regions of type for the giverZ,, Z ., K., LDR, p, andT
hydrometeor types is well understood, we have cawbservation.
structed two-dimensional membership functions in
this space. The two dimensions are reflectivity and one
of the polarimetric variables; the value of the mend. Results of particle classification
bership function varies between 0 and 1 in the speci-
fied region. Boundaries between liquid droplets and In the spring of 1997, S-Pol was deployed near
hail in theZ, ~Z . plane are sketched in Fig. 3a. ThVichita, Kansas, as part of the Cooperative Atmo-
region bounded by solid black lines corresponds to thgheric Surface Exchange Study (CASES-97). The
range oZ_, values of liquid droplets for a given valuexperiment was performed to study the exchange of
of Z .. Natural variability in raindrop size distributionenergy, moisture, polarimetric radar-based precipita-
introduces scatter betwegn), andZ__ (Chandrasekar tion estimation, and trace chemicals between the land
and Bringi 1988); therefore, there is a fair amount ahd atmosphere in the Walnut Creek watershed in
overlap betweed,, andZ_, values for various rain Kansas (LeMone et al. 1998). On 13 June 1997, S-Pol
intensities. Figure 3b shows boundaries for all 15 diecorded data of a severe thunderstorm to the east of
ferent precipitation classes usiZg, andZ .. theradar. RHIscans &f , Z ., and the correspond-
Figure 3c is similar to Fig. 3b except precipitatiomg particle classification results are shown in
boundaries are shown in tdg —K__ plane. Figs. 2a—c, respectively. The storm extends to 16 km
To facilitate simpler implementation of memberin height and has a well-defined anvil, an overshoot-
ship functions, the two-dimensional functions are dig top, and a weak echo region. The storm persisted
composed into a multitude of one-dimensiond&br 90 min beyond the time of the RHI's shown in
functions as follows. For a giveh,,, the membership Fig. 2.
function is unity in regions bounded by a polarimet- The spatial variation i, andZ__ shown in Fig. 2
ric variable; at the edge of the regions the membesuggests the existence of a variety of particle types.
ship function linearly decreases to zero. Thus, tiAes expected, the high reflectivity and I@, regions
profile of the membership function for a constardre classified as hail by the fuzzy logic—based tech-
Z ., is a trapezoid bracketing the appropriate valuagjue (Fig. 2c). There were reports of large hail asso-
of the polarimetric variable. Trapezoidal membershipated with this cell near the time of the observation
functions are formulated for every 2-dB increment iiiled by the National Weather Service. However, no
reflectivity values of each particle category to genein-cloud aircraft measurements were available for
ate each of the two-dimensional membership funeerification. Regions with moderate reflectivity and
tions ofZ, ~Z ., Z, K., Z,-LDR, andZ,—p,,. Z, > 0.5dB were identified as light (< 10 mmh
Reflectivity and temperaturd ] membership func- moderate (< 40 mnT}), and heavy (> 40 mm¥rain
tions are one-dimensional. Proximity sounding datstensities. Rain—hail and graupel-rain mixed precipi-
are used to obtain the temperature profile. The tetation types were detected below hail regions and
perature membership function is nonzero only if ttebove rain regions. This is gratifying since raindrops
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Fic. 3. RHI scans of (a),4, (b) Z,., and (c) the correspond-
ing particle classification results (the dashed line denotes the freez-
ing level). The radar measurements were collected by the NCAR
S-Pol radar during the CASES-97 field program.

sified as dry snow, irregular ice crystals, ice crystals,
or supercooled liquid droplets. These small ice par-
ticles are found mostly in the anvil and near the top
of the storm as would be expected. Below the freez-
ing level, low reflectivity values were classified as
drizzle or cloud drops. It is noteworthy that a layer of
highZ_. (> 5 dB), with a low-reflectivity region to the
left of the precipitation echo, is classified as insects
(Wilson et al. 1994).

5. Conclusions

The fuzzy logic—based method described above
makes use of a smooth transition in polarimetric ob-
servable boundaries among precipitation types instead
of simple thresholds. The mathematical operations
involved are simple, linear, algebraic operations, and,

may be produced by hail-graupel melting as it deence, the particle classification procedure can be
scends, along with water-shedding processes. Algoplemented for real-time applications. Also, the
hail has a higher fall speed than raindrops and magthod is robust enough that its performance may not
fall through regions of rain. Graupel-small hail walse adversely affected due to typical measurement er-
identified just above the hail region. Above freezingr in some of the input variables. Alternate methods
level, the low reflectivity (< 30 dB) pixels were clas- such as the statistical decision theory method and neu-
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ral network approach are not feasible at the momeningi, V. N., J. Vivekanandan, and J. D. Tuttle, 1986: Multipa-
because of the limitation on in situ microphysical pre- rameter radar measurements in Colorado convective storms.

cipitation data in conjunction with polarization radar gg;t?“: Hail detection studied. Atmos. Sci43, 2564~
measurements. The lack of in situ mlcrophy5|cal dati, V. Chandrasekar, N. Balakrishnan, and D. S. Zrnic, 1990:

is a limiting factor for training neural networks and ap examination of propagation effects on radar measure-
also for obtaining the required statistical decision ments at microwave frequencidsAtmos. Oceanic. Technol.,
theory—based approaches. Results of the fuzzy logic—7, 829-840.

based particle classification approach show importéﬁtandrasekar, V., and V. N. Bringi, 1988: Error structure of mul-

aspects of the microphysical structure of a typical Con_tlpa_ramete_r radar an'd_surface measureme_nts of rainfall. Part
. . . |: Differential reflectivity.J. Atmos. Oceanic. Technadb,
vective thunderstorm. The boundaries between vari-;g4_ g9

ous precipitation types are defined using reflectivityoyiak, R. J., and D. S. Zmic, 1993oppler Radar and Weather
and polarimetric radar observables. Even though re-ObservationsAcademic Press, 562 pp.

flectivity, ZDR and temperature profile play arHaII_, M.. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Idehti-
important role in particle identification, the other po- fication of hydrometeors and other targets by dual-polariza-

. . . e . tion radarRadio Sci.19,132-140.
larimetric variables are needed for classifying mlxegfendry, A.,and Y. M. M. Antar, 1984: Precipitation particle iden-

phase precipitation. tification with centimeter wavelength dual-polarization radar.
Quantification of the precipitation amounts can be Radio Sci.19,115-122.

improved using the results of particle classificatiofloller, H., V. N. Bringi, J. Hubbert, M. Hagen, and P. F.

Power-law relationships that are used for precipitation Meischner, 1994: Life cycle and precipitation formation in a

estimation can be modified based on particle type tohybrld-type hailstorm revealed by polarimetric and Doppler

btain bett Al imilati f rad radar measurements. Atmos. Sci51, 2500-2522.
obtain better accuracy. Also, assimiialion of ra ajl'?lmeson,A. R., 1983: Microphysical interpretation of multiparam-

derived cloud microphysics into cloud models Will  eter radar measurements in rain. Part I: Interpretation of po-
improve the initial conditions of a numerical storm larization measurements and estimation of raindrop shapes.
forecast (Sun and Crook 1997). The particle-type Atmos. Sci40,1792-1802.

identification program has been incorporated in&psko, B., 1994Neural Networks and Fuzzy Systems: A Dynami-
cal Systems Approach to Machine Intelligefirrentice-Hall,

the S-Pol radar precipitation product package and dis—449 op
plays the result§ in real t_|r_ne._We plan_ to ven_fy an@mone, M. A., and Coauthors, 1998: CASES-98: Diurnal varia-
improve the particle classification technique using ob- tion of the fair-weather PBL. Preprin®pecial Symp. on Hy-
servations collected by cloud physics aircraft during drology,Phoenix, AZ, Amer. Meteor. Soc., 88-92.

the Florida component of TRMM/Texas and Florideerez, R- E., and J. P. Aubagnac, 1997: The lightning activity of

Underflights (TEFLUN-B). We envision that particle a hailstorm as a function of changes in its microphysical char-
| ificati Id al ) identif ti q acteristics inferred from polarimetric radar observatidns.
classirtication woula also 1aentity convective an Geophys. Resl02,16 799-16 813.

stratiform regions in clouds. The separation of cloyg:, ;. B. Rilling, J. Wilson, T. Weckwerth, and J. Vivekanandan,
systems into convective and stratiform is one of the 1997: S-Pol after three operational deployments, technical per-

primary objectives of TRMM for obtaining four- formance, siting experiences, and some data examples. Pre-
dimensional structures of latent heating in the atmo-Prints.28th Conf. on Radar Meteorologiustin, TX, Amer.

; Meteor. Soc., 286—-287.
sphere (Simpson 1988). Sachidanada, M., and D. S. Zrnic, 1986: Differential propagation

| phase shift and rainfall rate estimatiBadio Sci.21,235-247.
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