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Introduction

This presentation is based on a small sample of
WSR-88D Doppler radar observations (24 cases)
collected over the Mid-Mississippi Valley Region and
adjacent areas from 1992 — 2000.

The goal is to share insights into the storm

- circulation evolution - during the ‘Intensifying Stage
(Pre-Bow Echo — Early stages of BE) of Mesoscale
Convective Systems.

Preliminary storm conceptual models and examples
of WSR-88D imagery of severe convective lines and
tornadic (or non-tornadic) circulations during this
stage will be shown.



We will focus on:

1.

2.

Diagnosis of the pre-convective environment (shear /
(CAPE considerations).

the evolutionary reflectivity — Doppler velocity characteristics
during the MCS'’s ‘Intensifying Stage: (four preliminary
storm conceptual models derived from 21 of the 24 cases) _

. Document location of initial damaging winds reports

during this stage.

. First approximations of how you can determine the depth

of a stable layer north of a low-level boundary.

. Characteristics between tornadic and non-tornadic

circulations (Rotational Velocity [Vr] traces).

. Compare these characteristics to mesocyclones

associated with traditional supercells
(Burgess et al. 1982; 1995)



(1) Recent Studies Utilizing Doppler Radar:

Installation of the WSR-88Ds brought a surge of studies on
bow echo evolution (e.g. Funk et al. 1997; 1999);
Przybylinski et al. 1997; Schmocker et al. 1998;

Pence et al. 1998; Spoden et al. 1999; Wolf 2000; and others.

Regional Bow Echo studies utilizing WSR-88D data sets:
- Klimowski et al. 2000
- Przybylinski et al. 2000

Trapp and Weisman (2000) were successful in simulating
non-supercell tornadogenesis with Quasi-Linear Convective

Systems (QLCS).



(2) Data Analysis

- Low-level and elevated boundaries (including fronts) were
documented in many of our cases.

- Boundaries were identified by:
- hourly surface mesoscale analyses
- radar imagery (fine lines / lines of small
convective cells)
- visible satellite data

- Archive level Il (90%) and Level IV data (10%)
(KLSX, KEAX, KILX, KPAH) were used in our study.
- Rotational velocity (Vr) time-height traces were

constructed to show mesocyclone characteristics.
- Ground Surveys were conducted in 18 of the 24 cases



(3) Preliminary Stratification of Data

(Left Graphic) Pathways of linear to bowing MCS events

(12 cases studied) for the period 1992 — 1997.

(Right Graphic) Pathways of linear to bowing MCS events
studied or under study (12 cases) for the period 1998 — 2000.
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Monthly distribution of MCS events (cases studied or under
study) across the Mid-Mississippi Valley Region (1992 —
2000) (Note — most of the events during the month of May
occurred after May 15).
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Mid-Mississippi Valley Severe Wind Frequency (time of
wind damage reports for 21 cases (1992 — 2000)



Tornado Frequency Associated with Convective Lines

(9 cases 1992 - 2000)
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Mid-Mississippi Valley Tornado Frequency for squall lines
(cases studied) 1992 - 2000. Tornadoes occurred with
9 MCS events. (Working with a small sample)



4. Squall Line Studies (Early work)

SPRINGFIELD TORNADOQES and DOWNBURSTS
6, 1977

August &,

Fig, 1. Mapping of the damage from tornadoes (identified by “MNo."), downbursts (identified by large numeral), and microbursts (identified by “m™) on & August 1977,
“Streamlines” of damage and F-scale contours are mapped. See figure legend for additional symbol explanation,

FORBES AND WAKIMOTO 1983

Forbes and Wakimoto (1983) conducted a detailed analysis of
the 6 August 1977 bow echo event across central lllinois.
Numerous downbursts (microbursts) and 18 tornadoes were
recorded with this event. (17 were cyclonic / 1 anticyclonic).



WSR-57 Radar Data from KSTL on 6 August 1977. The
white dots represent locations of downburst (and tornadoes).
Time is in UTC. (From Forbes and Wakimoto 1983).



Squall Line Studies (recent work)

- Utilizing a special Doppler data set from Australia,
Rasmussen and Rutledge (1993) showed that an MCS
evolved through four stages:

- Formative

- Intensifying

- Mature

- Dissipating

- They described MCS evolution as a ‘ continuum of
changes’ of the kinematic and reflectivity structures
characterized by a gradual tilting of the flow branches
and reduction of updraft strength and echo intensity.

-RR defines the ‘Intensifying Stage’ when the convective
line evolves into a nearly solid line echo.

- cell towers reach their greatest height

- updraft intensity Is strongest




INTENSIFYING
Mesoscale Updraft

- Early stages of the flow
branches.
- Front to Rear Flow .
Overturning
- Mesoscale Rear Inflow Downdraft

- Shaded region between .
these tWO bl’anCheS |S deﬁned Schematic diagram of the 'Intensifying Stage’

L . of squall line flow features adapted from
as a ‘slo PINg Zzone of Thorpe et al. (1982). Vorticity zone is shaded

region.

negative horizontal vorticity’

- Negative horizontal vorticity results from strong horizontal
gradients of buoyancy:
- positive buoyancy due to heating of condensation /
freezing along the leading edge.
- negative buoyancy due to cooling of evaporation,
melting, and condensate loading (convective towers).



- Preliminary findings from our COMET study showed that
the leading edge of this zone of ‘negative horizontal vorticity’
IS a preferred region for vortex generation.

- Convective-scale vorticies (tornadic and / or non-tornadic
may form along the leading edge of this zone
(release of a horizontal shearing instability along the leading
edge of the convective system)




| ow-level Boundaries

- Second important preliminary finding from several of our
cases was the presence of:
- a low-level boundary from earlier convection or
- an old quasi-stationary frontal boundary

- Either of these features were frequently oriented
orthogonal to the approaching convective line.

- 16 of the 21 MCSs we studied appeared to be directly
Influenced by either a low-level or elevated boundary.



How important are
boundaries?
Very important

- Boundaries serve in
two ways:

1) local forcing mechanism for convective initiation

2) as a source of local vorticity augmentation for
convective-scale vortices.

- From the Vortex Project Markowski et al. 1998 and
Rasmussen et al. 1994 showed that nearly 70% of all
tornadoes observed in VORTEX were associated with
boundaries.



5. Pre-Convective Environment
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Pre-Convective Environment

ALL CASES CAPE J/kg BULK SHEAR
WEED) (Mean 0 —3 km)

Weak Shear 3592 J/kg 9.6 mst

(5 cases)

Moderate Shear 3367 J/kg 16.8 m s

(11 cases)

Strong Shear 3147 J/kg 21.2 m st

(5 cases)

- Sample size still too small.



(6) Storm Conceptual Models

- Four Groups of storm morphologies were derived
from our preliminary data set. A fifth group, classifed as
‘other’ was needed for 3 cases.

Four storm conceptual models included:

1) Low-level boundary intersecting the northern part of the
convective line (7 cases).

2) Low-level boundary or frontal boundary intersecting the
southern part of the convective line (7 cases).

3) East-west frontal boundary located 30 to as much as
150 km south / southwest of the MCS (5 cases)

4) Low-level boundary intersecting the updraft region of a
High-Precipitation (HP) supercell (2 cases).



SOURCE OF LOCAL

1. Low-level boundary intersecting the northern end
of a convective line. N oores

- 7 cases S

- 6 events late afternoon EXTERNAL
. h BOUNDARY

or early evening.
1 event mid morning.

a) Reflectivity Characteristics:
Line of small isolated cells or
reflectivity fine line intersects
and extends downwind from the northern end of the larger linear
convective line (pre-bowing).

- east-west line of isolated cells reflect location of low-level
boundary.
- First reports of damaging winds occurred:
- south of the intersection in all seven cases.



b) Group 1: Circulation Trends:

-In all 7 cases, first two circulations formed in the vicinity
of the low-level boundary — convective line intersection.

- In 3 of the 7 events, numerous circulations (4 cores or more)
were identified along the cyclonic shear side of the bow
(northern end to near the apex).

- Core 3 and subseqguent cores occurred as much as 10 to
15 minutes after initial identification of Core #2.

- Non-supercell tornadoes (FO — F1) occurred in each of
these 3 events, with Cores 2 and 3; and with Core 4 In
one of the three cases.

- Two events — moderate shear / high CAPE; third event
weak shear / high CAPE.

- In the remaining 4 cases; 2 or 3 mesocyclone cores were
documented. None which spawned tornadoes.



b) Group 1: Circulation Trends cont’

Circulation characteristics:

- In 5 of the 7 events, first two cores formed in the vicinity of
an isolated cell (anchored to a boundary) — convective line
merger (preferred region of enhanced convergence —
vertical stretching of the updraft).

- Remaining two cases — first two cores formed near an
external boundary (fine line) — convective line intersection
(but no cell-line merger).

- Core #1 — weaker Vr magnitudes / shallower depths
compared to Core #2.

- Core #2 — stronger Vr magnitudes, greater depth, upscale
growth (non-descending) and longest lifetimes.

- Core #3 and subsequent cores — non-descending
characteristics, similar Vr magnitudes, nearly equal depth,
however often shorter lifespan compared to Core #2.



utflow Boundary-

s« Contom| 2%

= Havana

x

| . Y | R Ty b Direction 0. Spedd =Lt
ED AR 17 EaAE EIEEES 50 55 6 EZIECIS48 =37 26 -1c pesW@l 15 25 36 47 57 364 RF

629,98 Vol: 5 CrtrhAz: 306.1dg wval: 0040.5 Selaz: 306.1dc j06/29/98 Vol: 5 Ctrhz: 306.1dg Val: -035.9

Selhz: 306.1dg
21:02:47 UTC Swp: 1 CtrBn: 63.6om Hgt: 6.%ft SelBn: 63,08 [21:02:47 UTC Swp: 1 CteRn:  63.6om  Hot: 6.2t SelBn: 63.0nn
EILX VCP: 21 Mag: 4% El: 0.5deg MNygst: 52kes [KILX VCP: 21 Mag: 43 El: 0.5degy Nygst: S8kts

2103 UTC 29 June 1998 reflectivity (0.5°)(left); storm-relative velocity (right)
from Lincoln IL (KILX). Convective towers extending southeast from the
northern end of the large line reflects the location of an old outflow
boundary. Circulation cores #1 and #2 formed at this intersection.
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2126 UTC 29 June 1998 reflectivity (0.5°) slice (left); storm-relative velocity
(right). Circ #2 intensified rapidly since 2103 UTC and became tornadic

(F1 damage). Core #3 became tornadic only during the very early stages
of its lifetime. Core #4 became tornadic after 2135 UTC.
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Depth (Km)
7

Comparison between
Mesocyclone Cores 1, 2,
and 3

Core #1 — weaker rotation / o
lower overall depth compared Time (UT)

to Core #2

Data from KILX (Lincoln IL)

Core #2 — upscale growth Time-height Vr trace Core #1.
Circulation #2 / 29 June 1998

(non-descending characteristics) Magnitudes of Vr(m/s)/Delta-V [ values (m/s)
with strongest rotation detected Depth (K

within lowest 3 km.

- Tornado produced F1 damage
between 2120 and 2126 UTC
just before Core #2 reached its e e
greatest depth. T — S —— p—

® 3.4 degree * 4.3 degree * 6.0 degree

Data from KILX (Lincoln IL)

Time-height Vr trace Core #2.



Core #2 Circulation #2 / 29 June 1998

Magnitudes of Vr(m/s)/Delta-V [ Jvalues (m/s)

- Showed ‘non-descending’ Depth (km
characteristics with the
strongest rotation detected

within the lowest 3 km. il i ok

B TornadogeneSIS Occurred ° 0.5 degrees T!::;:rl?s < 2.4 degree
Just before Core 2 reaChed ® 3.4 degree < 43 degree ¢ 6.0 degree
ItS greatest helght and Data from KILX (Lincaoln IL)

during the period of CIRC 2: June 29, 1998
. Circulation Diameter (km)
strongest low-level rotation.

Diameter (km)

- On Circulation diameter trace

note the drop in core

diameter between 2114 and 2056 21.02 2108 2114 2.120 212? 21-32 2138 2144 2150
2120 UTC — just before T
tornado-genesis. R st ol

Data from KILX



29 June 1998: Circulation 3
Core #3 g (oo MHQHItUdE? :;:;:fﬂc:tatmnal Velocities (Vr)

- Showed rapid
‘non-descending’
characteristics during the
early stages of the
circulation’s lifespan.

- Strong gate-to-gate
shears [Delta V] were
detected during the first two CIRC 3: June 29, 1998
Volume scans. Circulation Diameter glfm)

- Non-supercell tornado 1o D

occurred between
2109 — 2120 UTC.

- Second peak (vortex

2109 2115 2120 2126 2132 2138 2144 2150 2156 2202

stretching) occurred at Time (UTC)
2144 UTC _ and a Second >~ 0.5 degrees 1.5 degrees ~~ 2.4 degrees

= 3.4 degrees 4.3 degree % 6.0 degree

tornado occurred.




29 June 1998: Circulation 4

Hegigml Magnitudes of Rotational Velocities (Vr)

Core #4

- showed similar
circulation trends to
Circ #2.

- Non-descending S
characteristics with oot om L7 sl T

the strongest rotation e

detected within the CIRC 4: June 29, 1998
lowest 3 km Eirculation__Diameter (km)

- Tornadogenesis t
occurred just preceding ) | L
the core reaching its R
greatest height and |

Diameter (km)

2121 2126 2132 2138 2144 2150 2156 2202 2207

strongest rotation within Time (UTO)
* 0.5 degrees 1.5 degrees * 2.4 degrees = 3.4 degrees

the |OweSt 3 km- < 4.3 degree * 6.0 degree “ Series 7

Data from KILX
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2155 UTC 29 June 1998 reflectivity (0.5° slice) (left); storm-relative velocity
(right). Large-scale circulation (C2a) associated with comma-head echo is

referred to as a ‘Line-end Vortex.” Most extensive wind damage occurred
along and south of this circulation’s path (Leading Edge -Dashed Red Line).
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2207 UTC 29 June 1998 reflectivity (left) / SRM velocity (right) (0.5° slice)
from KILX. Line-end vortex C2a broadens and becomes an unbalanced
vortex. Note the weakness in the reflectivity field along the southern periphery
of the line-end vortex (west of the red dashed line). These convective cells do
not mature compared to the cells further southwest along the line due to the
system cold pool overwhelming the ambient shear.
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29 June 1998: Circulation 2a (Line-end Vortex)

Magnitudes of Rotational Velocities (Vr) (m/s)

Height (k) Valugs inm s

2155 2202
Tirme {(LITZY
+ Oddegrees 14 degrees 24 degrees
* J3degrees « 43degrees 6.1 degrees

Data fram hILX

Rotational Velocity (\Vr) Trace of Circulation 2a (Line-end Vortex).
Magnitudes of Vr are shown in (m/s). Note: some of the strongest
rotation was documented below 2 km during the period of 2149 -
2202 UTC. Could this vortex play a role in focusing or enhancing
surface wind damage along the southern periphery of the circ.?
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Map of Circulation Tracks C1 and C2 and Line-end Vortex C2a across
north-central lllinois. Squall line positions are denoted every 30 min.

T signifies location of tornadic damage. Significant wind damage

(est > 70 kts) occurred over and east of Peoria IL (PIA) across northern
Taswell through McLean counties in lllinois (along the southern periphery
of the line-end vortex). Wind damage continued downstream for the next
1.5 hours after the demise of the line-end vortex.



Line-End (Bookend) Vortex
(Weisman 1993)

- Velocity field — is a vector sum of the
velocity field induced by each vortex.

- Enhancement of the flow between
the vortices can be interpreted as a
focusing effect of the vortex couplet.

- The strength of the RIJ is dependent
on the sizes and magnitudes of the
vortices as well as the spacing
between them. after Weisman 1993

- Environmental shear and tilting of ambient horizontal
vorticity by updraft — downdraft couplets associated with
Intense convective cells appear to play roles in the generation
of line-end vortices.




2. Low-level boundary intersecting the southern end of

the convective line.

- [ cases

- 5 late evening — early
morning events

- 2 late afternoon — early a CORE #
evening events. ;

CORE #2

Vi - oL
a) Reflectivity Characteristics ﬁ 4% P
I i - - 7/ OUTFLOW o .
- Two differing reflectivity S

patterns:
(Pattern #1 — 3 cases) o

- line of small isolated cells or reflectivity fine line intersects,
and extends downwind from the southern part of the larger
convective line.

- line of small isolated cells is frequently oriented orthogonal
to the larger convective line.




Pattern #2
- Similar to the first S __ourrow
pattern except that W
multiple convective cells
are noted well north of

the warm frontal or a
low-level boundary.

- First and second

OLD OUTFLOW

circulations often form

In the vicinity of the
boundary — convective
line intersection.

- Two of the seven cases support this pattern.




First Reports of damaaqging winds and initial bowing:

- 29% (2 of the 7 events) north of the low-level boundary —
convective line intersection

- 42% (3 of the 7 events) south of the intersection.

- 29% (2 of the 7 events) both north and south of the
low-level boundary — convective line intersection.



b) Circulation Trends:

-In 6 of the 7 events, first two cores formed in the vicinity of

a boundary — convective line intersection.
- In the remaining case, first or second cores were

not observed in the vicinity of the intersection.

- In 5 of the 7 events, numerous cores (4 or more) were
identified along the cyclonic shear side of the bow

(northern end to near apex of the bow).
- Core 3 and subsequent cores developed after the first two

cores by 5 to as much as 15 minutes.

- In the remaining 2 cases, only three cores were
documented throughout the bow echo evolution.



b) Circulation Trends cont’

- Non-supercell tornadoes (FO — F1 damage) occurred in
3 of the 5 numerous core events — with Cores 2 and 3 .
However, non-supercell tornadoes did not occur with the
remaining 2 events.

- In all five events — moderate shear was present.
However, magnitudes of CAPE ranged from 2200 —
3000 J/kg in 4 cases and near 3500 J/kg in the 5™ event.

- Non-supercell tornadoes (FO — F1 damage) occurred in
1 of the 2 remaining MCS events where only 3 cores were
documented.

- Moderate shear was present, and magnitudes of CAPE were
2000 and 3200 J/kg respectively.
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1106 UTC 14 June 1998 reflectivity (0.5° slice) (left); SRM velocity (right)
(KLSX). Southern most line of small convective cells, intercepting a strong
storm (hybrid supercell?) embedded within the line, appear to reflect
location of the low-level boundary. The second parallel line - elevated
boundary. Circulation core #1 and #2 formed with the southern-most line.
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1116 UTC 14 June 1998 reflectivity (0.5° slice) left); storm-relative velocity
(0.5° slice) (right). Circulation #2 intensified near the intersection of the
smaller line of convective cells and the hybrid storm. As the smaller line
of convective cells (external boundary) passed over KLSX, magnitudes of
0-2 km SR helicity increased from 106 m2/s2 (0928 UTC) to 783 m2/s2
(1111 UTC).
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1117 UTC 14 June 1998 reflectivity (left); SRM velocity (right) at

1.5° slice. C2 shows a symmetrical velocity pattern at 1.5° slice
compared to the cyclonic convergent velocity pattern seen at 0.5° slice.
A gate to gate velocity couplet is noted near the southern periphery

of C2. Delta-V magnitudes = 48 m s-1.



- During the later part of
Core #2's mature stage,
this vortex appeared to
play a role in focusing the
swaths of most intense
wind damage.

- Atornado occurred

just prior to the circulation
reaching its greatest height
and within the vicinity of strong low-level rotation
(1131 — 1136 UTC).




Comparison of Mesocyclone

Cores #1 and #2.

- Core #1 — weaker rotation /

shallower depth compared
to Core #2.

- Core #2 — strongest
rotation, greatest overall
depth and upscale growth
(non-descending)
characteristics.

Strongest rotation again
was detected within the
lowest 2 km.

Depth (Km)

0 .
1050 1056 1101 1106 1111 1116 1121
' Time (UTC)
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Case #2: 26 May 2000

- Surface analysis
0200 UTC 27 May 00

- Warm front draped from surface low over northwest MO
east-southeastward into south-central lllinois.

- Surface dewpoints reaching mid 70s pooling near warm
front over central and western Missouri.
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- Surface-based CAPE 2512 J/Kg
- Mid-level region relatively dry — supportive of damaging winds.
- Bulk Shear (0-3 km) 17 m s-1; (0-5 km) 22 m s-1.



KLSX VWP Profile for 0217 UTC — 27 May 2001
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"Note ‘kink’ in lowest 2 kft of hodograph

- Roger Edwards and Rich Thompson from SPC have observed
this type of hodograph structure in supercells.

- The ‘kink’ represents a transition from strong speed shear /
little directional shear to stronger directional shear / weaker
speed sheatr.



WSR-88D Archived level Il data from KLSX

- A large mature squall line .
entered northeast through %
central Missouri after
0200 UTC.

- Several smaller bowing
segments were embedded
within the larger line.

- Bands or areas of smaller
convective cells extended

between Columbia (COU)  [ex, = s g o ois, e e
and Quincy IL (UIN) and —
northwest of St. Louis. 0237 UTC 27 May 2000

(Just north of the warm frontal boundary)



KLSX Reflectivity Image 0328 UTC

- Keyed upon the region
of Isolated cells —
convective line mergers
(eastern Audrain county).
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- Second of two isolated cells intensify just prior to merger.
- Small vortex (Circ 1a) formed near the southwest flank of the
larger isolated cell. TVS trips (2"? time) near the merger. Yet
no tornado or damage was noted in the vicinity of the TVS.



KLSX reflectivity / SRM velocity 0344 UTC / 0.5° slice
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- Merger is complete
- However Cla continued to be evident.

A TVS trips a third time near the remains of the southern
flank of the isolated cell — convective line merger.



Rotational Velocity Time-Height trace for Circ 1a

27 May 2000: Circulation 1a
Magnitudes of Rotational Vel (Vr), Delta V [m/s]

. Heaght (k) Values inm s’

Time (LT
s 04 degrees

- Circ 1a initially formed as a tornadocyclone

- Strongest gate-to-gate shears were detected at 0344 UTC
at the lowest 2 elevation slices.

- No tornadic damage was noted at the time of strongest
shears. AV — aliased velocities.



KLSX Reflectivity / SRM 0354 UTC/1.5° sllce

[0 e & o e i A Sl . S
Tl B =37 26| -16 ESNE 15 25 36 47 | 57 (364 RF
054 27700 ¥ol: 147 Ctrhe: 351. 3|lg Val: 00 bi 5 Salhz: 351.1dg ns.air.i;uu ¥ol: 147 CteAz: 351.3dy Val: 0023.3 Seliz: 351.1dg
03:54:55 UTC Swp: 2 CteRn: 47, 1m Hil §.8kft Selfn: 47.%m na 51 55 UG Swp: 2 CteRn:  47.Lae  Hgt: B.0kfr Selfn: 472w
KL SK ¥oP: 11 Madg: 1.ddey Mygst: J46kts vor: 11 Mg £«  El: 1.ddeq Nygst: dbkts

- Band of weaker cells extending from southern Pike through

northern Greene Co IL is nearly orthogonal to the larger line.

- An isolated cell within the band intensified just prior to merger.

- Circ 1a, becomes a broad vortex located in the vicinity of the
comma-head.

- YET — no wind damage was reported with this segment.
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KLSX Reflectmty / SRI\/I 0359 UTC /0.5° slice
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- Second northern bowing segment forms northeast of the first
segment.

- Merger is complete between the isolated cell — northern BE.

- Very small vortex (Circ 2) formed just southeast of this merger.

- Wind damage occurred with the northern BE and not the first.



KLSX Reflectivity / SRM 0404 UTC / 0.5° slice
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- Northern BE showed slight acceleration compared to the
southern BE. Wind damage was associated with this segment.
- Circ 2 intensified along the southern flank of the northern BE
(Core diameter very small < 1.0 km).
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KLSX reflectivity / SRM 0404 UTC / 0.5° slice with
NSSL Meso and TVS (TDA output).
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- Circ 2 located just south of the apex maintains a v

ery small

core diameter ( 1.0 km) (Delta V at 1.5° slice 51 m s1).

(tornadocyclone).

- Circ 2 spawned a weak tornado (F1 damage) at 0412 UTC
- A third new small vortex formed near the intersection of

Isolated cell — larger convective line (C3).
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Same as preceding page except for TVS (TDA output).
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- Northern bowing segment remains well defined.

- Circ 2 remains a tornadocyclone (Delta V = 46 m s).

- Circ 3 spawned a weak tornado at 0414 UTC (Delta V — 43 m s1)
- Circ 4 formed in the vicinity of the developing comma-head.

- Nearly impossible to detect C2 and C3 in real time (core dia).




Time-height trace of magnitudes of Delta V

27 May 2000: Circulation 2
Magnitudes of Delta V [m/s]
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- Circ 2 initially formed at low-levels (below 2 km) then
revealed ‘non-descending’ characteristics.

- Gate-to-gate shears were detected throughout the circ’s
lifespan.

- Tornadogenesis occurred just after period of strongest
gate-to-gate shears and vortex stretching.



Time-height trace of magnitudes of Delta-V

May 27, 2000; Circulation 3
Magnitudes of Rotational Vel (\r); Delta V [ m/s ]
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- Gate-to-Gate shears were detected throughout much of
Circ’s 3 lifespan.

- Tornadogenesis occurred near the time of strongest
gate-to-gate shears (Delta-V — 59 m s1 (0414 UTC)
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Mapping of wind and tornadic damage tracks
26 — 27 May 2000.



3. Low-level or (Quasi-stationary frontal) boundary
located 20 — 150 km south of Convective Line

- 5 cases

- 4 |late night — early morning
events

1 late afternoon — early

\]
U
)
- ¥~ OUTFLOW

evening.

HORIZONTAL

VORTICITY

a) Reflectivity characteristics [EEZRT é “".‘;,;;L;,E

ISOLATED \
EXTERNAL

Convective line remains north Cramgenr  SOUNPARY
or northeast of quasi-stationary
frontal boundary (elevated convection).

40 km

- First reports of damaging winds often occur during the Initial
bowing of the line (if convective-scale downdrafts are able
to penetrate the cool stable layer north of the boundary).




Group 3 cont’

- In 2 of the 5 events studied, the convective line was 20 to
60 km north of the quasi-stationary frontal boundary.

- In the remaining 3 cases, the convective line was well north
(80 — 130 km) of the surface front (elevated convection).

b. Depth of Stable Layer north of Boundary

- How do we measure the depth of the stable layer near the
surface?
First Approximations: WSR-88D VWP data
Nearby Profiler sites
LAPS Soundings
Surface temperatures north of bndry.

- 3 of the 5 cases, shallow stable layer was present (at or
less than 0.5 km deep), widespread wind damage occurred.
- In the remaining 2 cases, the stable layer was greater than
2.5 km (5000 ft) deep. Only isolated wind damage occurred.




c) Circulation Trends:

- Core #1 — formed near the northern flank of the convective line

- Core #2 and successive cores formed north of the apex of
the bowing segment.
Core #2 — developed after isolated cell — convective line
merger in 2 of the 5 cases studied.

- Core #1 originated at mid-levels. Exhibited weaker cyclonic
shears compared to neighboring Cores 2 and 3.

- Core #2 often revealed strongest rotation, greatest depth,
longest lifetimes compared to neighboring mesocyclones.
Non-descending characteristics was observed Iin
2 of the 5 cases.

- Core #2 in Group 3 cases were not as strong compared
to second cores in Groups 1 and 2.

- Tornadoes were reported with Core #2 in one of the five
cases.
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2213 UTC 25 May 1996 reflectivity (0.5° slice)(left); storm-relative velocity
(right), Circ #2 formed after isolated cell — convective line merger and
Intensified during the next 30 minutes. Transient vortices were identified
with the convective cells along the old east-west frontal boundary.
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2237 UTC 25 May 1996 reflectivity (1.5° slice)(left); storm-relative velocity
(right). Circ #2 (40 nm NNW KLSX) spawned a tornado at 2242 UTC near
the apex of the bowing segment.
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Comparison of Mesocyclone
Cores #2 and #3 (25 May 96)

Cores #2 and #3 revealed

| d di S g AR I e e ]
upscal€ (non- escen Ing) 0’5”5 W Wi TELT Wik

2218 2230 2242 2253 2305 2317
g rOWth . Time (UTC)

However, the low-level shears e
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were weaker during the early
stages compared to Core #2
In Groups 1 and 2.

Height (km)

Tornadic damage (F1) occurred
well into the mature stages of
Core #2.

Severe weather was absent
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4. Low-level Boundary Intersecting the Forward Flank
of a High-Precipitation supercell

- 2 cases
1 late evening event
1 early afternoon

a) Reflectivity Characteristics

- HP storm evolves into a
broad bowing line segment.
- Low-level boundary
Intersects the forward flank
of an HP supercell.

‘SOURCE OF LOCAL

re
HORIZONTAL “
- FINE LINE
HIGH-PRECIPITATION VORTICITY ,@

SUPERCELL \ ‘
REAR INFLO\W& " \

NOTCHES =~7  ISOLATED EXTERNAL
~ CELLS OUTFLOW
BOUNDARY

CORE #1 OR #2
/i

SUBSEQUENT
NEW CORES

OUTFLOW

- First reports of damaging winds frequently occurs just south
of the HP storm (along the leading edge of the HP storm'’s

RFD).



b) Circulation Trends

- Single (or multiple) mesocyclone cores form within the
HP storm'’s forward flank updratft.

- Core #1 originate from ‘mid-level beginnings’ (similar to
observations shown by Burgess et al. 1982 with classic
supercells.

- Core #1 may evolve into a ‘cyclonic divergent’ (outflow
dominated) circulation.

- Second and successive cores may form along the
leading edge of the HP storm’s Rear Flank Downdraft.
These cores can become tornadic.
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0159 UTC 19 June, 1998 plan view reflectivity (0.5° slice); storm-relative

velocity (left) from KLSX.




June 18, 1998 case  Deptn (km)
- Circulation #1

originated from ‘mid-levels L ‘1§1 9@1.55,16 N
within the HP storm'’s St \é HOF7 16 e Ty a0

‘15 J2 13 13 16 ‘;
forward ﬂank . 0144 0154 0204 0215 0225
- After 0144 UTC Circ #1 Time (UTC)

(upward and downward)
" 3.4 degree X 4. ¢ 6.0 degr
(upward and downward) 34degree X 43degree  * 6.0 degree

as |t |ntenS|f|ed Data from KLSX
(descending characteristics).

-After 0154 UTC, an unbalanced velocity couplet (cyclonic
divergent) emerges.

- Strongest rotation remains at mid-levels.

- Vr magnitudes once again intensify and lowers within the
core after 0210 UTC.
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0215 UTC 19 June 1998 plan view reflectivity (0.5° slice) (left); storm-
relative velocity (right).
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0321 UTC 19 June 1998 reflectivity cross-section (left), storm relative
velocity cross-section (right) taken at the 120° radial. The bright red region

on the velocity cross-section represents a component of the mesoscale
rear inflow.
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Map of Circulation #1 track, squall line positions (every 30 minutes) and wind
damage reports (W). Hatched region signifies swaths of intense wind
damage. Nearly all of the wind damage occurred south and east of Circ #1's

path.




(7) Mesocyclone Characteristics

Comparison of circulation characteristics between our
data set and Burgess et al. (1982) data set.

Rot Vel Diameter Height (km)
(m/s) (km)

Squall Line 19.0 7.2

(Low)

Trad Super- 23.0 5.4

cell (Low)

Squall Line 18.8 7.4 7.6

Trad 25.0 6.0 9.2

Supercell

L = surface to 8200 ft.



(8) Summary

- Twenty-four MCS events were studied across the
Mid-Mississippi Valley Region during the period of
late March — September 1992 — 2000.

- Our study focused on the ‘intensifying stage’ of MCS
evolution.

- The 21 MCSs were classified into four reflectivity patterns
(or groups) with 13 of the 20 cases classified into
Groups 1 and 2.

- In Groups 1 and 2, a low-level boundary intersected either
the (northern or southern part) of the convective line.

- Group 3 — convective line remains north of the outflow
boundary or front. Group 4 — HP storm — boundary
Intersection.



- Groups 1 and 2: 1st and 2" core mesocyclones formed near
the intersection while 3% and successive cores formed
north of the apex of the bowing segment.

- 15t core — weaker rotation compared to Core #2.

- 2"d core — strongest rotation, non-descending (upscale
growth) and longest lifetime (Tornadic?)

- 3'd and successive cores
3'd core — rotation just as strong as Core #2.
Non-descending characteristics, shorter lifetime
compared to Core #2. (Tornadic?).
Successive cores — rotation just as strong as
Core # 3. Non-descending characteristics, even
shorter lifetime compared to Core #3.

- Tornadoes frequently occur just prior to the mesocyclone
core reaching its greatest depth and in the vicinity of
strongest low-level rotation. ‘Look for Trends’




Summary cont’

Group 3 events
- Challenge we identified was determining the depth of the
stable layer. Could severe downdrafts penetrate this
stable layer north of an outflow boundary?
- First approximations used:
1) time-height profiler data
2) WSR-88D VWP data
3) LAPS Sounding
4) Surface temperature
- If the depth of the stable layer exceeded 5000 ft, then it
was difficult for severe winds to penetrate the deep stable
layer.

- Circ #2 appeared to exhibit the strongest rotation, greatest
depth and longest lifespan of the group of vortices detected.
One tornado occurred in only one of the five cases.



Summary cont’

Group 4 events:

- 2 cases — High Precipitation supercell evolved into a broad
bowing structure.

- HP storm’s updraft region (forward flank) intercepted an
old outflow boundary in both cases.

- Several tornadoes occurred In first case. Tornadoes were
absent in the second case. However, wind damage was
extensive.

- Mesocyclone cores (#1 and #2) originated from Mid-level
beginnings (4 — 7 km layer). In the first case, successive
cores showed a non-descending characteristic and
became tornadic.



Summary cont’

- In Groups 1, 2 and 4: Core #2 appeared to have a secondary
role where enhanced wind damage occurred along the
southern periphery of the circulation’s path.

Comparison of Mesocyclone characteristics with studies

conducted by Burgess et al. 1982.

- Rotational strength — our 2"9 cores in Groups 1 and 2
revealed weaker rotation, larger core diameters, and
lower overall depths compared to supercell mesocyclones
across Oklahoma.
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For More Damaging Winds Studies
Check Out:

http://www.crh.noaa.gov/Isx/science/newcomet.htm
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