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ABSTRACT

As part of the Joint Polarization Experiment (JPOLE), the National Severe Storms Laboratory con-
ducted an operational demonstration of the polarimetric utility of the Norman, Oklahoma (KOUN),
Weather Surveillance Radar-1988 Doppler (WSR-88D). The capability of the KOUN radar to estimate
rainfall is tested on a large dataset representing different seasons and different types of rain. A dense gauge
network—the Agricultural Research Service (ARS) Micronet—is used to validate different polarimetric
algorithms for rainfall estimation. One-hour rain totals are estimated from the KOUN radar using conven-
tional and polarimetric algorithms and are compared with hourly accumulations measured by the gauges.
Both point and areal rain estimates are examined. A new “synthetic” rainfall algorithm has been developed
for rainfall estimation. The use of the synthetic polarimetric algorithm results in significant reduction in the
rms errors of hourly rain estimates when compared with the conventional nonpolarimetric relation: 1.7
times for point measurements and 3.7 times for areal rainfall measurements.

1. Introduction

Improvement of quantitative precipitation estima-
tion (QPE) is one of the primary benefits of a dual-
polarization radar. In addition to conventional radar
reflectivity factor Z, a polarimetric radar is capable of
measuring the differential reflectivity ZDR, specific dif-
ferential phase KDP, and the cross-correlation coeffi-
cient �hv between two orthogonally polarized radar re-
turns. Using multiparameter radar information instead
of radar reflectivity alone helps to significantly improve
the radar data quality, distinguish rain echoes from the
radar signals caused by other scatterers (snow, ground
clutter, insects, birds, chaff, etc.), and to reduce the
impact of drop size distribution (DSD) variability on
the quality of rainfall estimation. Differential reflectiv-
ity ZDR is a good measure of the median drop diameter
that should be taken into account for more accurate
rain measurements. Among the indisputable advan-
tages of polarimetric rainfall estimation, based on spe-
cific differential phase KDP, is its immunity to radar
miscalibration, attenuation in precipitation, and partial
blockage of radar beam (Zrnic and Ryzhkov 1996).

Several different polarimetric relations for rain rate
estimation have been suggested during the last two de-
cades. These relations utilize Z, ZDR, and KDP in dif-

ferent combinations. The relations were obtained for
different radar wavelengths using either simulated or
measured DSDs and various assumptions about the
shape dependence of raindrops on their size. The per-
formance of many suggested polarimetric rainfall esti-
mation techniques has been tested on several extended
datasets from Oklahoma (Ryzhkov and Zrnic 1996;
Ryzhkov et al. 2000; Ryzhkov et al. 2001), Colorado,
Kansas (Brandes et al. 2001), and Florida (Brandes et
al. 2002, hereinafter BZV02) for S-band radars; Aus-
tralia (May et al. 1999) for C-band radar; and Virginia
(Matrosov et al. 2002) for X-band radar.

All of the above validation studies have shown that
(a) there is an improvement in rainfall estimation if a
dual-polarization radar is used, and (b) polarimetric
rainfall estimation techniques are more robust with re-
spect to DSD variations than are the conventional
R(Z) relations. At the moment, however, there is no
consensus on the degree of improvement and the
choice of an optimal polarization relation.

As part of the continuous modernization of the na-
tionwide Weather Surveillance Radar-1988 Doppler
(WSR-88D) network, the U.S. National Weather Ser-
vice (NWS) has decided to add polarimetric capability
to existing operational radars. The proof of concept was
tested on the National Severe Storms Laboratory
(NSSL) research WSR-88D in Norman, Oklahoma
(KOUN radar hereinafter), which was polarimetrically
upgraded in March 2002. The polarimetric Next Gen-
eration Weather Radar (NEXRAD) prototype was de-
signed to simultaneously transmit and receive horizon-
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tally (H) and vertically (V) polarized waves (Doviak et
al. 2000).

During 2002–03, the NSSL conducted an operational
demonstration of the polarimetric utility of the KOUN
WSR-88D. This demonstration project, referred as the
Joint Polarization Experiment (JPOLE), sought to
evaluate the engineering design of the polarimetric
WSR-88D and demonstrate the utility of the radar data
and products, including rainfall estimation and hydro-
meteor classification.

A major objective of this study is to test existing
conventional and polarimetric relations for rainfall es-
timation on a large dataset that was obtained during
JPOLE and to develop an algorithm that is optimal and
robust for the operational environment. Rainfall prod-
ucts from the polarimetric KOUN WSR-88D are vali-
dated using the Agricultural Research Service (ARS)
Micronet, consisting of 42 rain gauges, with an average
spacing of 5 km (Fig. 1). This network is well calibrated
and provides 5-min rain accumulation data. The data
collected by the conventional KTLX WSR-88D (lo-
cated about 20 km from the polarimetric prototype)
were used to validate calibration of radar reflectivity
measured by the KOUN radar.

The ARS gauges are located at the ranges of 50–88
and 70–108 km from the KOUN and Oklahoma City,
Oklahoma (KTLX), radars, respectively. At such dis-
tances, the performance of radar-rainfall algorithms
over the ARS test area is mostly affected by DSD vari-
ability and the possible presence of hail rather than
ground clutter and brightband contamination (even
during cold season in Oklahoma). Therefore, the ARS
Micronet primarily serves as a validation tool to opti-
mize polarimetric rainfall estimation at relatively close
distances from the radar where the first two factors are
most important. Evaluation of polarimetric rain mea-
surements at longer distances from the radar is a sub-
ject of separate studies (Giangrande and Ryzhkov 2003;
Ryzhkov et al. 2003).

2. Radar dataset

We collected polarimetric KOUN radar data from
April 2002 through July 2003. In total, 98 events were
cataloged both chronologically and by event type,
and subsequently were described within an online da-
tabase (available at http://cimms.ou.edu/�heinsel/
jpole/database.html and http://cimms.ou.edu/�heinsel/
jpole/stormtype.html, respectively).

A data subset, consisting of 24 rain events with 50 h
of observations for which the ARS gauges recorded a
sizeable amount of precipitation, was selected for in-
depth analysis. This subset contains 18 convective and 6
stratiform rain events observed from June 2002 to June
2003. Both “warm season” and “cold season” rain
events are well represented in the dataset. Cold-season
stratiform rain with a relatively low bright band mostly
occurred in the month of October 2002.

Radar reflectivity Z, differential reflectivity ZDR, dif-
ferential phase �DP, and the cross-correlation coeffi-
cient �hv were estimated with a radial resolution of
0.267 km using a short dwell time (48 radar samples) in
order to satisfy the NEXRAD requirement for rapid
antenna rotation rate (3 rpm) and azimuthal resolution
(1°).

Absolute calibration of Z for the KOUN radar was
performed either by matching the 1-h areal rainfall es-
timate using the standard NEXRAD R(Z) algorithm
with the one obtained from the operational KTLX ra-
dar, or by applying a polarimetric consistency tech-
nique (Gorgucci et al. 1999) recently modified by Ryzh-
kov et al. (2005) if simultaneous KTLX data were not
available. The latter capitalizes on the interdependence
of Z, ZDR, and KDP in the rain medium. Radar reflec-
tivity biases retrieved with these two methods usually
did not differ by more than 1 dB (Ryzhkov et al. 2005).

Absolute calibration of ZDR was conducted using
measurements of solar radiation in the orthogonal H
and V channels and polarimetric properties of dry ag-
gregated snow that was observed at high elevation
angles (Melnikov et al. 2003; Ryzhkov et al. 2005).

Polarimetric radar data are processed in the follow-
ing order:

1) Using averaging windows of three gates for Z and
five gates for ZDR and �hv, Z, ZDR, and �hv are
smoothed along the radial.

2) Both ZDR and �hv are corrected for noises in the two
orthogonal channels. This is because both variables
are negatively biased if the signal-to-noise ratio is
less than 20 dB (Bringi and Chandrasekar 2001,
hereinafter BC01).

3) Total differential phase �DP is edited, unfolded, and
smoothed along the radial using two averaging win-
dows, corresponding to 9 and 25 successive gates.
Thus, “lightly filtered” and “heavily filtered” radial
profiles of �DP are obtained.

4) Both Z and ZDR are corrected for attenuation using
heavily filtered �DP and simple relations �Z (dB) �

FIG. 1. Radar locations with respect to the ARS Micronet
gauges (crosses).
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0.04�DP (degrees) and �ZDR (dB) � 0.004�DP (de-
grees) (Ryzhkov and Zrnic 1995).

5) Two estimates of specific differential phase KDP are
obtained from the filtered �DP as a slope of a least
squares fit for two range averaging intervals, corre-
sponding to 9 and 25 successive gates. For any par-
ticular range gate, the lightly filtered estimate of
KDP is selected if Z � 40 dBZ, and, otherwise, the
heavily filtered estimate is used (Ryzhkov and Zrnic
1996). Thus, radial resolution of the KDP estimate is
about 6 km for relatively light rain (R � 12 mm h�1)
and about 2 km for more intense rain.

3. Radar-rainfall algorithms

As a basic conventional algorithm for radar-rainfall
estimation we use the standard NEXRAD relation

R	Z
 � 1.70 � 10�2Z0.714 	1


(i.e., inversion of the formula Z � 300R1.4), where Z is
expressed in mm6 m�3, and R is in mm h�1. Values of Z
are subject to a threshold at the level of 53 dBZ in order
to mitigate hail contamination.

Two groups of polarimetric rainfall algorithms have
been tested. One group includes the most recent
power-law R(KDP), R(Z, ZDR), and R(KDP, ZDR) rela-
tions that we have found in the literature for S-band
radars. Another group consists of similar algorithms
that were derived using multiyear statistics of DSD
measurements in central Oklahoma, with the following
three different assumptions about raindrop shapes: 1)
equilibrium shapes defined by Beard and Chuang
(1987), 2) “oscillating raindrop” shapes from Bringi et
al. (2003), and 3) shapes specified by BZV02.

The equilibrium raindrop shapes in steady airflow are
defined by the following relation between the raindrop
axis ratio a/b and its equivolume diameter D (mm):

a�b � 1.0048 � 0.000 57D � 0.026 28D2 � 0.003 682D3

� 0.000 167 7D4. 	2


The actual shapes of raindrops in unsteady flow are
expected to differ from the equilibrium shapes because
of drop oscillations. Laboratory studies by Andsager et
al. (1999) indicate that the shape of raindrops in the size
range between 1.1 and 4.4 mm is better described by the
formula

a�b � 1.012 � 0.014 45D � 0.010 28D2. 	3


Bringi et al. (2003) suggested using Eq. (3) for drops
with sizes smaller than 4.4 mm and Eq. (2) for larger
sizes. Another shape–diameter relation that combines
the observations of different authors was recently pro-
posed by BZV02,

a�b � 0.9951 � 0.025 10D � 0.036 44D2 � 0.005 303D3

� 0.000 249 2D4. 	4


The dependencies of the raindrop axis ratio on its
equivolume diameter for equilibrium shapes defined by
(2), “oscillating” raindrop shapes specified by Bringi et
al. (2003), and the ones defined by (4) are shown in
Fig. 2.

In all simulations, it was assumed that the drops are
canted with the mean canting angle equal to zero and
the width of the canting angle distribution of 10°. The
25 920 one-minute DSDs that were measured with the
NSSL’s 2D video disdrometer in 1998–2004 have been
used for the computation of radar variables and the
derivation of polarimetric relations for rainfall estima-
tion (Schuur et al. 2001).

A list of tested polarimetric algorithms is presented
in Table 1. The notation Zdr is used for differential
reflectivity expressed in linear scale, whereas ZDR is
expressed in logarithmic units (BC01; BZV02; and
Illingworth and Blackman 2002, hereinafter IB02). The
Goddard’s axis ratio used in the IB02 study is given by
the formula (Goddard et al. 1995)

a�b � 1.075 � 0.065D � 0.0036D2 � 0.0004D3.

	5


In the course of this study, 1-h rain totals that were
obtained from the radars and gauges were compared.
We examined both “point” and “areal” estimates of the
one-hour rain accumulation. By point estimate we
mean an hourly total averaged over a small (1 km � 1°)
area centered on an individual gauge. Areal mean
hourly total or areal mean rain rate is determined as a
sum of hourly accumulations from all gauges that re-
corded rain divided by the number of such gauges.

After calibrating, editing, smoothing, and correcting
for noise and attenuation of the raw radar data (as
described in section 2), the following operations are

FIG. 2. Different dependencies of the raindrop axis ratio on the
equivolume diameter.
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performed in order to obtain point estimates of hourly
rain total:

1) The estimates of Z and KDP are converted into rain
rates R(Z) and R(KDP) for each range gate using
Eq. (1) and relation 4 from Table 1.

2) The �hv threshold of 0.85 is used to eliminate the
echoes of nonmeteorological origin (ground clutter,
anomalous propagation, biological scatterers, chaff,
etc.). In all gates with nonmeteorological echoes
R(Z), R(KDP), and ZDR are set to zero.

3) The estimates of R(Z), R(KDP), and ZDR are aver-
aged over two radials and five range gates closest to
a particular gauge to obtain mean values R(Z),
R(KDP), and ZDR for an area of about 1 km � 1°
that is centered on the gauge. Averaging rain rates
rather than Z and KDP is dictated by nonlinearity of
the R(Z) and R(KDP) relations.

4) Mean values Z and KDP are obtained by inverting
R(Z) and R(KDP).

5) Rain rates corresponding to the 1 km � 1° spatial
domain are computed using mean values of Z, ZDR,
and KDP, and the algorithms listed in Table 1.

6) One-hour accumulations for different rainfall rela-
tions are obtained via summing up the correspond-
ing rain-rate estimates.

Note that instead of spatially averaging the R(Z, ZDR)
and R(KDP, ZDR) estimates in individual gates, we
use the spatially averaged values Z, KDP, and ZDR to
compute rain rates assigned to the 1 km � 1° area.
This allows us to reduce the impact of the “measure-

ment noise” in the raw KDP and ZDR data on the quality
of rain estimates. Further reduction of statistical er-
rors is achieved after rain rates are summed up to ob-
tain hourly rain totals. Update times for rain-rate esti-
mates were different for rain events observed in 2002
and 2003. In 2002, volume coverage pattern (VCP)
included only the two lowest elevation tilts—0.5°
and 1.5°—whereas in 2003 the VCP consisting of 14–
15 elevation angles was implemented. Thus, the up-
date times for rain-rate estimates were about 2 and 6
min in 2002 and 2003, respectively. Only the data col-
lected at elevation 0.5° were used for rainfall estima-
tion.

4. Validation and optimization of polarimetric
rainfall algorithms using the ARS Micronet
gauges

To characterize the quality of different polarimetric
rain algorithms, we examine a fractional bias (FB)

FB �
TR � TG�

TG�
, 	6


fractional rms error (FRMSE)

FRMSE �
	TR � TG
2�1�2

TG�
, 	7


and fractional standard deviation (FSD) of rainfall es-
timates

TABLE 1. List of different polarimetric algorithms used for rainfall estimation.

R(KDP) � a |KDP | b sign(KDP)

a b Assumptions Source

1 50.7 0.85 Simulated DSD, equilibrium shape BC01
2 54.3 0.806 Measured DSD (FL), Brandes’ shape BZV02
3 51.6 0.71 Simulated DSD, Goddard’s shape IB02
4 44.0 0.822 Measured DSD (OK), equilibrium shape NSSL
5 50.3 0.812 Measured DSD (OK), Bringi’s shape NSSL
6 47.3 0.791 Measured DSD (OK), Brandes’ shape NSSL

R(Z, ZDR) � a ZbZdr
c

a b c Assumptions Source

7 6.70 � 10�3 0.927 �3.43 Simulated DSD, equilibrium shape BC01
8 7.46 � 10�3 0.945 �4.76 Measured DSD (FL), Brandes’ shape BZV02
9 7.11 � 10�3 1.0 * Simulated DSD, Goddard’s shape IB02

10 1.42 � 10�2 0.770 �1.67 Measured DSD (OK), equilibrium shape NSSL
11 1.59 � 10�2 0.737 �1.03 Measured DSD (OK), Bringi’s shape NSSL
12 1.44 � 10�2 0.761 �1.51 Measured DSD (OK), Brandes’ shape NSSL

R(KDP, ZDR) � a |KDP | bZdr
c sign(KDP)

a b c Assumptions Source

13 90.8 0.93 �1.69 Simulated DSD, equilibrium shape BC01
14 136 0.968 �2.86 Measured DSD (FL), Brandes’ shape BZV02
15 52.9 0.852 �0.53 Measured DSD (OK), equilibrium shape NSSL
16 63.3 0.851 �0.72 Measured DSD (OK), Bringi’s shape NSSL

* Here, c � �8.14 � 1.385ZDR – 0.1039ZDR
2 .
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FSD � 	FRMSE2 � FB2
1�2, 	8


where TR and TG are radar and gauge hourly totals for
any given radar–gauge pair and brackets mean averag-
ing over all such pairs.

a. Statistical properties of different rainfall estimates

Fractional biases, standard deviations, and rms errors
of the point and areal radar-rainfall estimates for the
conventional and various polarimetric relations listed in
Table 1 are summarized in Table 2. The number of
radar–gauge pairs that were used to compute statistical
parameters in Table 2 is 1813 for hourly point rainfall
estimates. The number of areal mean rain rates is 50.
The average hourly gauge accumulation is 6.3 mm for
the whole dataset.

There is an obvious overall improvement in rainfall
estimation when we switch from R(Z) to any polari-
metric algorithm. This improvement is also illustrated
by Figs. 3 and 4 where the radar–gauge scatterplots are
shown for the conventional algorithm and three polar-
imetric algorithms that perform the best in terms of the
rms error for each of the R(KDP), R(Z, ZDR), and
R(KDP, ZDR) categories (algorithms 4, 10, and 14 in
Table 1, respectively). It is evident that the conven-
tional algorithm tends to overestimate rain for this
dataset, most likely due to the presence of hail in many

storms observed during the spring and summer of 2003.
The use of the R(KDP) relation results in an apparent
reduction of the bias and rms error when compared
with R(Z). Further improvement, although not as dra-
matic, is achieved if the two-parameter polarimetric al-
gorithms are utilized.

Generally, polarimetric estimates of rain are less sus-
ceptible to the DSD variations than the standard R(Z)
relation. However, they are more prone to statistical
measurement errors of polarimetric variables than are
the R(Z) estimates to statistical errors in Z. Part of the
scatter in Figs. 3b, 3c, and 3d is attributed to such “mea-
surement noise” that is considerably reduced in areal
rainfall estimates (the corresponding panels in Fig. 4).
The R(KDP, ZDR) algorithm demonstrates the most im-
pressive improvement for areal mean rain rates exceed-
ing 5 mm h�1, whereas the R(Z, ZDR) relation performs
better than others at lower rain rates.

b. A “synthetic” rainfall algorithm

An ultimate goal of this study is to find an optimal
rainfall algorithm that works best of all for the JPOLE
dataset. Can we do better than the best of the algo-
rithms listed in Table 1? Intuitively, it is obvious that
using different combinations of radar variables for dif-
ferent categories of rain intensity might be beneficial
(Chandrasekar et al. 1993). If the rms error is used as a
quality criterion, then the joint use of Z and ZDR is
advantageous for point measurements of rain, whereas
the combination of KDP and ZDR is a preferable choice
for areal estimates.

The coefficients in the R(Z, ZDR) and R(KDP, ZDR)
relations depend on the statistics of DSD and raindrop
shapes. Direct measurements of drop shapes with a 2D
video disdrometer remain problematic (Ryzhkov and
Schuur 2003). An alternative radar method for rain-
drop shape retrieval was suggested by Gorgucci et al.
(2000). According to this method, a linear dependence
of the axis ratio on equivolume raindrop diameter is
assumed, and the slope of such dependence is obtained
from the measured Z, ZDR, and KDP. This method,
however, is still in a developing stage and was not tested
on a large dataset. The assumption about linear depen-
dence of raindrop oblateness on its diameter might be
too simplistic.

In other words, the prevalent shape of raindrops in
the observed rain events is unknown and represents
serious uncertainty. Instead of speculating about actual
drop shape, we resort to a semiempirical approach to
obtain “optimal” R(Z, ZDR) and R(KDP ZDR) relations.
According to such an approach, the ratios of mean ar-
eal rain rates from the radar R� and gauges G� are
examined as functions of a “net” ZDR, provided that
the one-parameter R(Z) and R(KDP) relations are uti-
lized. The net value of differential reflectivity ZDR� is
defined as a weighted average ZDR for a particular hour
over a whole gauge network:

TABLE 2. Fractional mean biases, fractional standard devia-
tions, and fractional rms errors of the radar estimates of 1-h rain
totals and areal mean rain rates (%) for different radar-rainfall
algorithms listed in Table 1.

Algorithm

Point Areal

FB
(%)

FSD
(%)

FRMSE
(%)

FSD
(%)

FRMSE
(%)

R(Z ) � 1.70 � 10�2Z0.714

19.4 82.0 84.2 60.1 64.6

R(KDP) � a |KDP | b sign(KDP)

1 1.1 69.4 69.4 45.0 45.0
2 12.1 75.5 76.4 50.7 52.5
3 16.0 69.3 71.2 44.3 47.7
4 �10.3 58.0 58.9 32.9 34.2
5 3.3 67.8 68.0 43.4 43.7
6 �1.1 62.4 62.6 37.9 37.9

R(Z, ZDR) � a ZbZdr
c

7 17.8 70.5 72.8 39.8 44.2
8 3.5 62.9 62.9 26.5 26.8
9 12.4 72.9 74.0 35.2 37.7

10 �5.1 50.0 50.2 26.0 26.2
11 �4.1 52.7 52.9 29.9 29.9
12 �6.7 50.0 50.5 26.0 26.5

R(KDP, ZDR) � a |KDP | bZdr
c sign(KDP)

13 �9.1 52.9 53.7 25.4 26.7
14 �11.0 54.6 55.8 21.7 24.2
15 �14.0 52.7 54.6 27.0 30.0
16 �4.0 56.9 57.0 32.0 32.1
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ZDR� �

�
i, j

Ri, j	Z
ZDR
i, j

�
i, j

Ri, j	Z

, 	9


where superscript i characterizes the scan number
within the 1-h time interval and superscript j stands for
the gauge number. Because differential reflectivities
that are associated with larger rain rates are more im-
portant to characterize rain regime and its impact on
the total rain estimation than the ones associated with
light rain, each ZDR measurement is weighted propor-
tionally to the rain rate computed from the R(Z) rela-
tion. Thus, the net ZDR characterizes the most intense
part of rain for a given hour in the gauge area.

Figure 5 shows scattergrams of R(Z )�/G� and
R(KDP)�/G� versus ZDR� for 50 h of observations.
Mean areal rain rates R(Z)� and R(KDP)� are com-
puted using Eq. (1) and algorithm 4 from Table 1:

R	KDP
 � 44.0 |KDP |0.822 sign	KDP
. 	10


It is quite clear from Fig. 5 that both R(Z) and
R(KDP) tend to underestimate rain in which DSD is
dominated by smaller drops (low ZDR�) and overesti-

mate it if rain is characterized with a large raindrop
median diameter (high ZDR�). If the net ZDR values
are less than 1 dB, the KDP-based algorithm produces
larger negative bias than the conventional one. For a
warm season convective rain with high ZDR, the
R(KDP) estimate is much less sensitive to the median
raindrop diameter than its conventional counterpart.

The observed dependencies of R(Z )�/G� and
R(KDP)�/G� on ZDR� have a simple physical explana-
tion. As was pointed out by Ryzhkov and Zrnic (1996),
for larger drop sizes KDP � D4.24, whereas for smaller
drop sizes KDP � D5.6 (where D is an equivolume rain-
drop diameter). The rain rate is approximately propor-
tional to the 3.67th moment of the DSD. Therefore, at
lower rain rates mostly associated with smaller drops,
the R(KDP) relation is more susceptible to the varia-
tions in the DSD than at higher rain rates.

The ratio R(KDP)�/G� exhibits noticeably tighter
dependence (less scatter) on the net differential reflec-
tivity than the ratio R(Z)�/G�. This means that we
may achieve better success in eliminating a dependency
of results for rain estimation on the median drop diam-
eter (or DSD variations) if the KDP–ZDR pair is se-
lected.

FIG. 3. One-hour individual gauge rain accumulations vs their estimates from different radar-rainfall algorithms
(24 rain events, 50 h of observations). The R(KDP), R(Z, ZDR), and R(KDP, ZDR) relations are the best in each
category (algorithms 4, 10, and 14 in Table 1, respectively).
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Similar conclusions can be drawn from Fig. 6 where
the net ZDR, as well as the ratios of the mean areal rain
rates obtained from the radar and gauges are displayed
versus an hour of observations ranked in chronological
order. Rain overestimation associated with large ZDR�
in the 2003 spring season (hours 32–40) is much more
pronounced for the R(Z ) algorithm than for the
R(KDP) relation. In the case of heavy rain associated
with large hail on 14 May 2003 (x � 36 in Fig. 6),
R(Z)�/G� � 3.1, whereas R(KDP)�/G� � 1.4.

Following an approach by Fulton et al. (1999), we
used the data displayed in Fig. 5 to approximate mean
dependencies R�/G� � f(ZDR�) with relatively simple
functions:

R	Z
��G� � f1	Zdr�
 � 0.4 � 5.0 |Zdr� � 1 |1.3, 	11


and

R	KDP
��G� � f2	Zdr�
 � 0.4 � 3.5 |Zdr� � 1 |1.7,

	12


where Zdr� is the net differential reflectivity expressed
in linear units [Zdr� � 100.1ZDR�(dB)]. Relations (11) and
(12) were used to build a “composite” or “synthetic”
R(Z, KDP, ZDR) algorithm that capitalizes on the rela-

tive merits of the R(Z, ZDR), R(KDP, ZDR), and R(KDP)
relations for different categories of rain intensity. The
following is a description of the proposed algorithm:

R � R	Z
�f1	Zdr
 if R	Z
 � 6 mm h�1, 	13


R � R	KDP
�f2	Zdr
 if 6 � R	Z
 � 50 mm h�1, 	14


and

R � R	KDP
 if R	Z
 � 50 mm h�1, 	15


where relations R(Z), R(KDP), and functions f1, 2 are
determined by (1), (10), (11), and (12), respectively.
Note that mean values R(Z), R(KDP), and Zdr are ob-
tained after averaging over the 1 km � 1° area, as ex-
plained in section 3.

The R(Z, KDP, ZDR) algorithm is structured in such a
way that the combination of KDP and ZDR is used for
estimation of about one-half of all rainfall in Oklahoma
according to the DSD statistics. It is known from simu-
lations that, when compared with the R(Z), R(KDP),
and R(Z, ZDR) relations, the R(KDP, ZDR) algorithm is
least affected by DSD variations and uncertainties in
raindrop shapes and canting. At lower rain rates (�6
mm h�1), the combination of KDP and ZDR is less effi-

FIG. 4. Mean areal rain rates from gauges G� vs their estimates R� from different radar-rainfall algorithms (24
rain events, 50 h of observations). The R(KDP), R(Z, ZDR), and R(KDP, ZDR) relations are the best in each category
(algorithms 4, 10, and 14 in Table 1, respectively).
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cient because KDP becomes too noisy. Therefore, Z (in-
stead of KDP) should be used jointly with ZDR. For very
high rain rates (�50 mm h�1), both ZDR and Z are very
likely contaminated with hail, and the synthetic algo-
rithm relies exclusively on KDP.

According to the synthetic algorithm, reflectivity
calibration is required only for estimation of light rain
with intensity less than 6 mm h�1 (which accounts for
about 32% of the annual rain in Oklahoma) and for
determining the choice among Eqs. (13)–(15). Thus, the
issue of accurate absolute calibration of Z is less critical
for successful performance of the synthetic algorithm
than of the conventional method that is solely based
on Z.

Although the functions f1 and f2 were originally de-
termined at a large scale for mean areal rain rates and
net differential reflectivities (i.e., the 40 km � 30 km

area and 1-h integration), we recommend applying the
same functions at a smaller scale (1 km � 1° spatial
resolution for each individual scan). The choice of Zdr

(in linear scale) instead of ZDR (in logarithmic scale) in
Eqs. (13)–(14) is dictated by the need to reduce the
impact of statistical measurement errors in differential
reflectivity at a smaller scale.

c. The performance of the synthetic algorithm

The coefficients in Eqs. (11) and (12) determining
the synthetic algorithm were originally obtained using a
subset of rain events observed in 2002. Then the algo-
rithm was tested using the whole dataset containing all
rain events in 2002 and 2003 for which the ARS and
Mesonet data were available. Very little tuning of the
coefficients was required to optimize the algorithm for
the whole JPOLE dataset.

FIG. 6. Net ZDR and ratios of mean areal rain rates from radar
vs hour of observations ranked in chronological order.

FIG. 5. Scatterplots of the ratios of mean areal rain rates ob-
tained from radar and gauges vs net values of differential reflec-
tivity for the R(Z ) and R(KDP) algorithms.
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The R(Z, KDP, ZDR) algorithm outperforms all of the
others according to all five statistical criteria: it has the
lowest bias, standard deviations, and rms errors for point
and areal rainfall estimates (Table 3). Figure 7 shows
scatterplots of hourly totals obtained from the R(Z)
and R(Z, KDP, ZDR) relations versus 1-h gauge accu-
mulations for individual radar–gauge comparisons and
areal estimates. The synthetic polarimetric algorithm
has very small overall bias and demonstrates a signifi-
cant reduction of the rms errors when compared with

the conventional rainfall estimator—1.7 times for point
measurements and 3.7 times for areal rainfall estimates.

Fractional biases FB and standard errors FRMSE of
rainfall estimates are inversely proportional to the
mean rain total TG�. Fractional rms errors are higher
for lower rain accumulations. Table 4 summarizes the
estimates of FB and FRMSE for different algorithms in
the three categories of hourly rain totals: low (TG � 5
mm), medium (5 � TG � 30 mm), and high (TG � 30
mm). The synthetic algorithm outperforms others in all
three categories. However, it tends to overestimate
light rain and underestimate heavy rain. The fractional
bias is smallest for moderate rain.

In addition to the conventional NEXRAD relation
Z � 300R1.4, we also examined the performance of two
other R(Z) relations: Z � 303R1.44 and Z � 527R1.41.
The first is matched with the observed 25 920 DSDs,
whereas the second yields the smallest fractional rms
errors among all possible power-law R(Z) relations for
the JPOLE dataset (64.3% and 41.6% for point and
areal estimates, respectively). Note that even the per-
formance of this optimal R(Z) algorithm is not as good
as other polarimetric algorithms from Table 3. The
“disdrometer matched” relation Z � 303R1.44 gives the

FIG. 7. One-hour (top) accumulations and (bottom) mean areal rain rates from gauges vs their estimates from
the R(Z ) and R(Z, KDP, ZDR) algorithms (24 rain events, 50 h of observations).

TABLE 3. Fractional mean biases, fractional standard devia-
tions, and fractional rms errors of the radar estimates of 1-h rain
totals and areal mean rain rates (%) for the best radar-rainfall
algorithms in each category.

Algorithms

Point Areal

FB
(%)

FSD
(%)

FRMSE
(%)

FSD
(%)

FRMSE
(%)

R(Z ) 19.4 82.0 84.2 60.1 64.6
R(KDP) �10.3 58.0 58.9 32.9 34.2
R(Z, ZDR) �5.1 50.0 50.2 26.0 26.2
R(KDP, ZDR) �11.0 54.6 55.8 21.7 24.2
R(Z, KDP, ZDR) �0.2 48.6 48.6 17.5 17.5
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fractional rms errors 73.2% and 53.1% for point and
areal measurements, respectively, that is, between the
ones from the standard and optimal R(Z) relations.

Figure 8 shows the bias in areal rain rates that are
estimated from radar using the R(Z, KDP, ZDR) and two
R(Z) relations versus hour of observations ranked in
chronological order. The three curves in Fig. 8 illustrate
the overall overestimation/underestimation of rain with
three algorithms for different seasons and rain regimes.
As was already mentioned, the conventional R(Z) al-
gorithm tends to significantly overestimate rainfall as-
sociated with intense convection, and especially with
hail reported for many spring events (Heinselman and
Ryzhkov 2004). The polarimetric method suggested by
Eqs. (13)–(15) dramatically reduces such overestima-
tion. Both methods slightly underestimate rain for cold
season stratiform events with marginal improvement if
the polarimetric algorithm is used (hours 10–30, Octo-
ber/December 2002). The optimal R(Z) relation pro-
duces a smaller positive bias for warm season rain
events and a significantly larger negative bias for cold
season events than the standard WSR-88D relation. In
other words, application of the optimal R(Z) relation
shifts the thin solid curve, illustrating the performance
of the standard R(Z) algorithm downward, without
much change in its shape. There is not a single R(Z)
relation that matches well the observed rain regimes,

whereas the polarimetric algorithm automatically ac-
counts for the differences between various types of
rain.

It is evident from Fig. 8 that the overall statistical
properties of different rainfall estimators are heavily
weighted by convective precipitation during the warm
season, and the majority of the improvement due to
application of dual polarization is attributed to heavy
convective precipitation. We do not exclude the possi-
bility that, in different geographical areas where rain
originated from hail is less likely than in Oklahoma, the
use of polarimetric rain measurements may not lead to
such remarkable and indisputable improvement as in
the U.S. Great Plains, which are notorious for severe
weather.

Figure 9 gives graphical representation of the relative
performance of different types of rainfall estimators if
the point, and areal rms errors are used as criteria. The
biggest reduction in the rms errors is achieved after
switching from the R(Z) algorithm to the R(KDP) esti-
mator. Further optimization of the dual-polarization al-
gorithm (adding ZDR) results in additional improve-
ment, although not as dramatic as during the first step.
Additional sophistication of the polarimetric algorithm
yields better payoff in the areal rainfall estimation. The
transition from the R(KDP) algorithm to the R(Z, KDP,

TABLE 4. Fractional mean biases and fractional rms errors of the radar estimates of 1-h rain totals (%) for different algorithms in
the three categories of hourly rain totals: low (TG � 5 mm), medium (5 � TG � 30 mm), and high (TG � 30 mm).

Algorithm

FB (%) FRMSE (%)

Low Medium High Low Medium High

R(Z ) 19.3 18.9 23.2 119.6 66.7 35.7
R(KDP) �23.9 �7.0 �0.3 95.7 45.9 20.4
R(Z, ZDR) 2.5 �6.7 �13.2 73.7 38.3 25.4
R(KDP, ZDR) �18.5 �7.8 �15.7 85.0 41.8 28.8
R(Z, KDP, ZDR) 14.4 �4.2 �7.3 68.4 38.2 22.0

FIG. 8. The bias in areal rain rates estimated from radar using
the R(Z ) and R(Z, KDP, ZDR) algorithms vs hour of observations
ranked in chronological order.

FIG. 9. Fractional rms errors of point and areal estimates of rain
for different radar-rainfall algorithms. The R(KDP), R(Z, ZDR),
and R(KDP, ZDR) relations are the best in each category (algo-
rithms 4, 10, and 14 in Table 1, respectively).
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ZDR) relation leads to a 2 times reduction of the rms
error of the areal rain estimate. The corresponding im-
provement in point estimates is more modest. Note that
the R(Z, ZDR) algorithm outperforms the R(KDP, ZDR)
estimator for point measurements, but the opposite is
true for areal estimates. This is additional confirmation
of the fact the KDP-based algorithms are better suited
for bigger watershed areas.

5. Evidence of different rain regimes

A large variety of rain regimes that is characterized
by different types of DSD was encountered during
JPOLE. The Z–ZDR scattergrams give insight into mi-
crophysical properties of rain and the type of DSDs
associated with these regimes. For a given Z, very large
values of ZDR generally indicate DSDs that are skewed
toward bigger drops, whereas very small values of ZDR

suggest a dominance of small drops. The slope of the
Z–ZDR scattergram and its spread are good predictors
of rainfall overestimation/underestimation if the R(Z)
relation is used.

Quite often two distinct clusters of the Z–ZDR pairs
are evident in the scattergrams (see Fig. 10, e.g.). This
happens most frequently in stratiform rain with weak
embedded convection. Raindrops in the stratiform part
of the storm usually originate from big snowflakes in
the melting layer, whereas the weak convective cells are
dominated by drops produced from smaller-sized grau-
pel. Therefore, weak convective elements are charac-
terized by smaller values of ZDR for the same Z when
compared with their stratiform counterparts. For strong
convection, the opposite is true.

The top panels in Fig. 10 demonstrate the Z–ZDR

scattergrams obtained from the data in the 50 km � 40
km area encompassing the ARS gauges (Fig. 1) for two
stratiform rain events with embedded convection ob-
served on 9 September 2002 (left top panel) and 9 Oc-
tober 2002 (right top panel). These scattergrams sum-
marize 1 h of data collected with 1 km � 1 km resolu-
tion at the elevation of 0.5°. The Z–ZDR clusters with
lower ZDR and higher maximal Z in both panels are
associated with relatively weak embedded convection.

As the rest of the panels in Fig. 10 show, the highest
hourly gauge totals corresponding to rain from convec-
tive elements are significantly underestimated by the
radar, whereas the smaller rain totals associated with
pure stratiform precipitation are measured more accu-
rately. Such underestimation is especially pronounced
for the NEXRAD R(Z) relation. There is no way for
any single R(Z) relation that is not sensitive to micro-
physical differences to “match” both rain regimes in a
relatively small spatial/temporal domain. The polari-
metric method automatically accounts for microphysi-
cal distinctions between the two rain types and, there-
fore, yields more accurate estimates of rain (bottom
panels in Fig. 10). It should be admitted, however, that

the highest hourly totals in both cases remain underes-
timated (although to a lesser degree) even after the
“synthetic” algorithm is applied.

Another two examples with very different types of
DSD are illustrated in Fig. 11. The rain event on 8
September 2002 (Fig. 11, left side) was associated with
a tropical air mass. This case is characterized by very
“flat” Z–ZDR scattergrams and pronounced underesti-
mation of rainfall if the conventional R(Z) algorithm is
used. It is interesting that the observed values of ZDR

barely exceed 1 dB, even for reflectivities reaching 50
dBZ.

In the second example, the storm on 14 May 2003
(Fig. 11, right side) produced intense rainfall (near-
flash-flood criteria) in the ARS Micronet area and hail
with sizes exceeding 13 cm. Some of the Micronet
gauges recorded rain rates of about 200 mm h�1 and at
least three gauges registered hourly rain totals exceed-
ing 50 mm. The sharp decrease of ZDR for Z � 60 dBZ
is a clear indication of hail. Hail cores are typically
surrounded by regions of very high ZDR that can be
attributed to melting hail or giant raindrops with ice
cores inside. The contribution of such areas to rain total
usually is much larger than the contribution from
“pure” hail-contaminated regions where high Z is
coupled with low ZDR.

The Z–ZDR scattergrams for rain mixed with hail are
extremely broad, that is, very high values of ZDR are
observed in a wide range of reflectivities, including very
low ones. This explains why thresholding Z at certain
level (53 dBZ for the WSR-88D radars) only partially
mitigates the impact of hail on the quality of rain mea-
surement. We still observe substantial overestimation
of rain after the 53-dBZ threshold is applied to the
radar reflectivity data (Fig. 11).

Application of the polarimetric method results in sig-
nificant improvement in both cases; the overall biases
are almost eliminated (Fig. 11, bottom panels), that is,
the mean areal rain rates from the radar and gauges
agree very well. The width of the scattergram for the
hail case, however, remains quite significant for both
estimates. This might point to additional sampling
problems that have a larger impact on the KDP-based
rainfall algorithms because of large measurement er-
rors of KDP. Although we do not observe systematic
deterioration in polarimetric rain estimation for the
2003 rain events, sampled with an update time of 6 min
(as opposed to the 2002 events with 3 times faster up-
date), nonetheless, cursory examination of isolated con-
vection suggests that more frequent sampling might be
beneficial for the application of the synthetic polarimet-
ric algorithm.

According to the existing NEXRAD scanning strat-
egy (Crum et al. 1993), the azimuthal sweep at the low-
est two elevation angles (0.5° and 1.5°) is repeated to
permit one sweep in a surveillance mode (to map the
reflectivity field) and another in a Doppler mode (to
measure radial velocities while mitigating range fold-
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ing, performing velocity dealiasing, and suppressing
ground clutter). Making polarimetric measurements at
the two successive sweeps would reduce the “sampling”
and “instrumental” noise in polarimetric rainfall esti-
mates.

6. Conclusions

The rain measurement capability of the polarimetric
prototype of WSR-88D with simultaneous transmission
and a short dwell time has been tested using a large dataset.

FIG. 10. Z–ZDR scattergrams and hourly ARS gauge totals vs rainfall estimates from the R(Z ) and R(Z, KDP,
ZDR) algorithms for two cases of stratiform rain with embedded convection: (left) 1600–1700 UTC 9 Sep 2002 and
(right) 1300–1400 UTC 9 Oct 2002.
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At distances less than 90 km from the radar where
variability of raindrop spectra and possible presence of
hail are dominant factors affecting the accuracy of rain-
fall estimation, most polarimetric algorithms clearly
outperform the conventional one, although the degree

of improvement might be noticeably “weighted” by a
few spring-heavy rain events.

The “synthetic” polarimetric algorithm R(Z, KDP,
ZDR) shows the best performance. This algorithm is
most robust with respect to radar calibration errors,

FIG. 11. Z–ZDR scattergrams and hourly ARS gauge totals vs rainfall estimates from the R(Z ) and R(Z, KDP,
ZDR) algorithms for tropical rain [(left) 1800–1900 UTC 8 Sep 2002] and rain mixed with hail [(right) 0700–0800
UTC 14 May 2003).
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DSD variations, uncertainty of the raindrop shapes,
and the possible presence of hail. The rms error of the
1-h total estimate is reduced by a factor of 1.7 for point
measurements and a factor of 3.7 for areal rainfall es-
timates.

The most significant improvement is achieved in ar-
eal rainfall estimation and in measurements of heavy
precipitation (often mixed with hail).

These advantages have important practical implica-
tions for (a) river flash-flooding forecasts and manage-
ment that require reliable measurement of areal rain
accumulations regardless of rain intensity, and (b) ur-
ban flash-flooding forecasts that requires accurate esti-
mation of heavy rain with a high spatial resolution.
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