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ABSTRACT

Using a set of long-term disdrometric data and of actual radar measurements from the McGill S-band
operational polarimetric radar, several sources of errors in rain measurement with polarimetric radar are
explored in order to investigate their relative importance and the feasibility of a polarimetric technique for
estimating R in the context of the McGill S-band operational radar that performs a full volume scan of 24
plan position indicators (PPIs) every 5 min. The sources of errors considered are the variability of drop size
distributions (DSDs), observational noise, and systematic variation of the relationships between R and
polarimetric parameters at different climate regimes.

Additional polarimetric parameters dramatically reduce the effect of the DSD variability on rain esti-
mates by radar. The effectiveness of various multiparameter relationships is investigated. The relationships
from the literature that are derived from the DSD model and measured DSDs at a different climate regime
differ from those derived from the disdrometric dataset herein. An application of these relationships to the
Montreal dataset results in a bias (about 10%–20%) and the significant random error resulting from the
DSD variability. These errors should be eliminated by using a relationship suitable for the local climate.

Assuming a measurement noise as expected from a slow scanning polarimetric radar [�1 rotation per
minute (rpm)] and a 10-min smoothing, the R � (Zh, ZDR) relationship outperforms the conventional R �
Zh because of the combined effect of the DSD variability and measurement errors. In addition, the marginal
measurement noise that is required to have the same accuracy of R � Zh and R � (Zh, ZDR) algorithms
is obtained as a function of temporal smoothing. The quantified measurement noise of the McGill S-band
fast scanning operational radar (�6 rpm) is significantly larger than that of a slow scanning radar, implying
that a temporal averaging of ZDR of 1 h is needed to achieve some gain with R � (Zh, ZDR).

1. Introduction

Advances in radar technology and the development
of polarimetric measurements have opened the way for
new techniques of radar rain estimation as well as the
possibility of target identification of hydrometers (Sa-
chidananda and Zrnic 1987; Chandrasekar and Bringi
1988; Chandrasekar et al. 1990; Ryzhkov and Zrnic
1995, 1998; Vivekanandan et al. 1999; Liu and Chan-
drasekar 2000). Target identification aids the data qual-
ity control, that is, permits the elimination of ground
echoes (GEs) and of the nonprecipitation echoes from
birds or insects. Furthermore, knowledge of the proper

phases of precipitation based on target identification is
an essential element in radar data assimilation in an
effort to improve quantitative precipitation forecasting.

Potential improvement in rain estimation by polari-
metric parameters (Zh and ZDR) was suggested by Se-
liga and Bringi (1976). They emphasized that the dif-
ferential reflectivity ZDR is a measure of mean drop size
that is independent of the number concentration and is
related to the slope parameter � of the exponential
drop size distribution (DSD) [N(D) � N0e��D]. [Note
that N0 is not fixed as in the Marshall and Palmer
(1948) DSDs.] Provided that the mean drop size is
known, the intercept parameter N0 can be derived from
Zh. Subsequently, R can be derived from the mean drop
size and N0. In addition, the specific differential phase
shift KDP is related to R with a power law in which the
exponent is close to 1 (e.g., R � 40.8K0.850

DP ), whereas the
exponent of the R–Z relationship is much smaller than
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1 (i.e., R � 0.0234Z0.683
h ). Here, KDP is defined as being

one way. Here, Zh can be approximated by the sixth
moment of the DSDs and R by the 3.67th moment.
Consequently, the estimation of R with an R–KDP re-
lationship is less affected by the physical variability of
DSDs than is the case with the R–Zh relationship.
Therefore, the main advantage of estimating R with
polarimetric parameters is related to the reduction of
the physical variability of DSDs.

However, observed radar parameters are subject to
the statistical noise resulting from the random positions
and velocities of raindrops within a sampling volume
(Doviak and Zrnic 1993). The conventional rain esti-
mation algorithms with the horizontal or vertical reflec-
tivities, Zh or Zv, are relatively less affected by this
statistical noise. A relative statistical noise in ZDR and
KDP depends on the correlation of signals in horizontal
and vertical channels. As the correlation increases, the
relative statistical noise decreases. When the polarimet-
ric signature is strong as in heavy rain, the statistical
noise is relatively small. Therefore, a comparison of the
uncertainty in R resulting from the statistical noise and
physical variability is essential in order to provide a
guideline in radar rain estimation and to investigate the
accuracy of polarimetric techniques.

As in the rain estimation with conventional R–Z re-
lationships, the application of polarimetric techniques
to radar hydrology requires relationships between the
polarimetric parameters and rainfall rate. These rela-
tionships are usually calculated by assuming an expo-
nential or gamma drop size distribution with a common
range of DSD parameters (Illingworth and Blackman
2002, and references therein). The common range of
gamma DSD parameters (N0, �, and �) is originally
obtained by comparing the exponent and coefficient of
69 R–Z relationships in Battan (1973) with the derived
relationship from the gamma DSD model (Ulbrich
1983). However, those R–Z relationships depend on the
regression method by which they were derived and on
the different instruments used in each case (Ciach
and Krajewski 1999; Uijlenhoet 1999; Campos and
Zawadzki 2000; Ciach et al. 2000; Salles and Creutin
2003; Lee and Zawadzki 2005a). Hence, the obtained
common range is quite questionable. It is also widely
known that the gamma DSD cannot explain the multi-
modal distribution and S-shaped DSDs (i.e., of a rela-
tive lack of medium-sized drops and larger number of
small and big drops: Fig. 7 of Sauvageot and Lacaux
1995; Fig. 10 of Uijlenhoet et al. 2003; Fig. 4.7 of Lee
2003; Fig. 1 of Montero-Martinez and Garcia-Garcia
2004; Fig. 6 of Zawadzki and Lee 2004), which are fre-
quently observed with modern disdrometers. To over-
come this limitation, Auf der Maur (2001) proposes a

generalized gamma as an alternative to better describe
the real shape of DSDs. The specific DSD model has
definite advantages in the simple representation of
DSDs and in the parameterization for numerical mod-
els. However, when a large database of reliable disdro-
metric data is available, error statistics and relation-
ships in rain estimation can be directly obtained from
actual disdrometric data rather than from any specific
DSD model. It will thus be possible to fully represent
possible physical variability at a climate regime without
adding an unnecessary model error. In addition, be-
cause the DSD variability depends on climatology, that
is, the geographic component, its effect on rain estima-
tion is better studied using actual local DSD variability.

The purpose of this paper is to explore the following
issues:

(i) a detailed error analysis in R estimation resulting
from the DSD variability,

(ii) a comparison of the relationships used in R esti-
mation derived from the specific model DSDs and
from observed DSDs, and

(iii) the feasibility of polarimetric techniques in R es-
timation by investigating errors resulting from the
DSD variability and measurement noise.

The DSD dataset used is limited to a single climate
region, Montreal, Quebec, Canada. The scanning strat-
egy of a dual-polarization radar is based on the McGill
S-band radar, which maximizes the volumetric surveil-
lance. Thus, all conclusions should be interpreted in the
context of the McGill S-band radar and the Montreal
environment. In section 2, we describe the disdrometric
and radar data used in this paper, and the expected
errors in R with the various combinations of polarimet-
ric parameters are shown in section 3. The efficiency of
various relationships in the reduction of the DSD vari-
ability is also discussed. In section 4, our derived rela-
tionships between R and polarimetric parameters are
compared with those from the literature. From this
comparison, we quantify the systematic variation of the
relationships at different climate regimes. Error propa-
gation in R resulting from the DSD variability and mea-
surement errors is shown in section 5, and the conclu-
sions follows.

2. Data used

a. Disdrometric data

A large disdrometric dataset has been obtained from
the precipitation occurrence sensing system (POSS; de-
veloped by Atmospheric Environment Canada) that
operated for 5 yr (1994, 1997–2000) in Montreal. The
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detailed description on POSS is given in Sheppard
(1990). POSS is a small continuous wave (CW) X-band
bistatic radar and measures the average Doppler spec-
trum every minute on the ground and converts it into a
drop size distribution. The number of diameter bins is
34 from 0.34 to 5.4 mm. The diameter intervals (dD)
increase with diameter (e.g., dD � 0.05 mm at D � 0.34
mm and dD � 1.84 mm at D � 5.4 mm). The number
density at D � 5.4 mm includes all of the number of
drops larger than this diameter. POSS has been care-
fully calibrated by measuring a precise beam pattern
and by simulations, and furthermore was widely vali-
dated with other disdrometers and rain gauges (Shep-
pard and Joe 1994; Campos and Zawadzki 2000). The
retrieval algorithm produces an overestimation of the
number density at the smallest size (D � 0.34 mm) and
a broadening of retrieved DSDs (Sheppard 1990). The
uncertainty that is related to the DSD retrieval algo-
rithm and undersampling effect is quantified by a
Monte Carlo simulation and has been shown to be less
than 0.5 dB for R and 1 dB for Z (Sheppard 2006). A
similar uncertainty is also quantified with two collo-
cated POSSs (see appendix A).

The sampling volume is three orders of magnitude
larger than that of other disdrometers so that under-
sampling is a second-order problem in POSS (see Lee
and Zawadzki 2005a appendix). Most conventional dis-
drometers have difficulty in measuring big drops be-
cause of the small sampling volume. Their measure-
ments are sometimes truncated at D � 3 mm even for
R � 6 mm h�1. This shortcoming could prevent the use
of disdrometric data for the derivation of polarimetric
parameters, especially ZDR. However, because of the
large sampling volume, the bigger drops are well mea-
sured with POSS (see the comparison of various dis-
drometers with POSS in Figs. 6–9 of Sheppard and Joe
1994). The research by Miriovsky et al. (2004) shows
the underestimation of bigger drops by POSS although
rain accumulation from POSS agrees well with rain
gauge measurements. It should be noted that in their
research 1) four disdrometers are not collocated and 2)
34-bin POSS DSDs are linearly interpolated to 20 Joss–
Waldvogel disdrometer (JWD) bins instead of using the
original measured DSDs. Our comparison of the collo-
cated JWD and POSS shows that the JWD systemati-
cally underestimates bigger drops, resulting into a sys-
tematic underestimation of Z (appendix A). However,
the large sampling volume has a trade-off. Strong hori-
zontal winds broaden the Doppler power spectra, dis-
torting the distribution. Small and big drops are over-
estimated because of strong winds, yielding a concave
distribution. However, this effect is minimal with hori-

zontal winds �5 m s�1 (see Fig. 3 of Sheppard and Joe
1994). However, the effects of vertical wind are more
significant than those of horizontal winds. The vertical
winds directly change the Doppler velocities and hence
the diameters, toward smaller values for updraft and
larger values for downdraft. An underestimation in R
of 20% (overestimation of 30%) can be reached with a
�0.5 m s�1 downward (�0.5 m s�1 upward) motion
(Fig. 3 of Sheppard and Joe 1994). Because POSS mea-
surements are obtained at the ground and more than
two-thirds of the cases are stratiform, we assume that
the effect of vertical wind should be not significant.

Our dataset is composed of 20 400 one-minute DSDs
and includes a variety of rain situations, such as long-
lasting stratiform rain, strong convection, drizzle, and
extratropical transition. During the measurement peri-
ods, disdrometric data from all rain situations are se-
lected rather than choosing specific events.

b. Radar data

The McGill S-band scanning radar has been up-
graded to dual-polarization in 1999 and has been mea-
suring polarimetric parameters in real time. It transmits
a 45° linearly polarized beam and receives horizontal
(H) and vertical (V) components simultaneously with
two receivers; that is, it uses the simultaneous sampling
method. According to Gingras et al. (1997), this
method provides relatively smaller measurement errors
in polarimetric parameters compared with the nonsi-
multaneous sampling method (i.e., switched H/V on
transmit and copolar receive). Because the McGill S-
band radar is a part of the Canadian operational radar
network, it scans at the speed of 6 rotations per minute
(rpm) or 36° s�1 to maximize the volumetric surveil-
lance. After a few months of upgrade, the horizontal
channel lost its sensitivity because of damage in the
rotary joint. The rotary joint was replaced in September
2001 and since then there is only a few decibels differ-
ence in the horizontal and vertical channels. The radar
calibration has been regularly checked with the GEs,
gauges, nearby POSS, and polarimetry. A detailed
methodology on disdrometric and polarimetric calibra-
tion methods is described in Lee and Zawadzki (2005c).
Five events of heavy rain have been selected after the
replacement of the rotary joint. The five events are (i)
0550–0950 UTC 13 September 2001, (ii) 2030 UTC 24
September–0430 UTC 25 September 2001, (iii) 2100
UTC 8 July–0200 UTC 9 July 2002, (iv) 0452–1052
UTC September 2002, and (v) 0230–0530 UTC 23 Sep-
tember 2002. They include strong convective cells or
lines and are accompanied by stratiform rain. As men-
tioned, all polarimetric parameters are collected at 6
rpm with a spatial resolution of 1° � 150 m and are
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degraded to 1° � 1 km for archive purpose. The data
quality is carefully controlled to avoid possible con-
tamination by ground echo using the polarimetric tar-
get identification of Zawadzki et al. (2001), Doppler
radial velocity, and the normal ground echo mask. To
avoid a possible contamination by the bright band
(BB), data are excluded when the 3-dB edge of the
radar beam intercepts the brightband limits. All data
are composed of 312 plan position indicators (PPIs) at
0.9° for 26 h. The distance between the POSS and scan-
ning radar was about 30 km.

3. Errors in rain estimation from polarimetric
parameters

In this section, we investigate errors in rain estima-
tion resulting from the variability of DSDs alone. Simi-
lar investigations have assumed a specific DSD model
and the usual range of model parameters (Sachidan-
anda and Zrnic 1987; Bringi et al. 1990; Chandrasekar
et al. 1990; Ryzhkov and Zrnic 1995; Zrnic et al. 2000;
Gorgucci et al. 2002). Only a few studies are performed
with measured DSDs (Seliga et al. 1986; Balakrishnan
et al. 1989: Keenan et al. 2001). However, their dataset
is limited (only a few storms) and is affected by the
undersampling effect of disdrometers so that it hardly
represents overall DSD variability, even in a single cli-
matic regime.

Instead of assuming a specific DSD (exponential or
gamma) model, we use actual measurements of DSDs
to fully maintain the physical variability of DSDs. From
a 5-yr disdrometric dataset (20 400 one-minute DSDs)
measured by POSS in Montreal, polarimetric param-
eters (Zh, ZDR, KDP) for S band (10.4 cm; equivalent to
the wavelength of the McGill S-band operational scan-
ning radar) are calculated with a scattering model
(Mishchenko et al. 2000) by assuming the drop defor-
mation formula of Pruppacher and Beard (1970) and a
temperature of 10°C. This scattering model has been
widely tested and the results are consistent with those
from another scattering model used by Torlaschi and
Zawadzki (2003). The rainfall intensity R is derived
from DSDs using the following equation:

R � 6� � 10�4�
Dmin

Dmax

v	D
D3N	D
 dD, 	1


where D (mm) is the diameter of drops, N(D) (m�3

mm�1) is the number of drops per unit volume and
diameter interval dD (mm), and v(D) (m s�1) is the
terminal fall velocity according to Gunn and Kinzer
(1949). Relationships between R and polarimetric pa-
rameters are subsequently derived by a least squares

regression. Using these relationships, the “trans-
formed” rainfall intensity RT is obtained from polari-
metric parameters and is compared with R from (1).
The scatterplot of R and RT is shown in Fig. 1 for se-
lected relationships. All derived relationships and sta-
tistics are shown in Table 1. The standard deviation
(SD) and the standard deviation of fractional error
(SDFE) are given by

SD � �1
k �	R � RT
2�1�2

and

SDFE � �1
k ��R � RT

R �2�1�2

, 	2


where k is the number of comparisons. The standard
deviation has large weight in heavy rain while SDFE
has the same weight for all ranges of rain intensity.
Hence, the former is a better representation of the ac-
curacy in moderate to heavy rain while SDFE better
reflects the accuracy in light to moderate rain. The
same error analysis is performed for half of the dataset
selected randomly. Results are consistent with those
from the whole dataset. This indicates that our sample
size is sufficiently large to yield robust results.

In the one-parameter approach with Zh (Fig. 1a), an
appreciable amount of scatter is present (SD � 3.7 mm
h�1 and SDFE � 61%) because of the variability of
DSDs. Using the polarimetric parameter KDP (Fig. 1b),
the scatter significantly decreases (SD � 2.3 mm h�1

and SDFE � 34%). In fact, KDP can be approximated
with the 4.6th moment (M4.6) of DSDs for the drop
shape of Pruppacher and Beard (1970). Assuming v(D)
� 3.778D0.67, R � M3.67. Hence, the effect of the DSD
variability is less pronounced in rain estimation with the
R–KDP relationship than that with the R–Zh relation-
ship. However, a significant amount of scatter is still
maintained because the DSD variability is still appre-
ciable.

The DSD variability cannot be fully explained by one
parameter, and a second parameter is needed (Sekhon
and Srivastava 1971; Waldvogel 1974; Seliga and Bringi
1976; Willis 1984; Testud et al. 2001; Lee et al. 2004).
This points to the advantage of dual-parameter rain
estimation. For our entire DSD database, results from
various combinations of polarimetric parameters are
shown in Figs. 1c–f with a summary of statistics and
relationships in Table 1. In general, the scatter is sig-
nificantly decreased (SD � 1.8 mm h�1 and SDFE �

23%), except for the relationship R � aZb
hZc

DR (not
shown in Fig. 1 and relationship 3 in Table 1). Further-
more, various relationships show interesting character-
istics. The scatterplots for the two relationships with Zh

and ZDR (Figs. 1c and 1d) show that a form of 10
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log(Zh/R) � f(logZDR) estimates R more accurately
than the conventional form of the formula (R � aZb

hZc
DR

or R � dZe
h10fZDR) at R � 20 mm h�1 (SD � 1.8 mm h�1

and SDFE � 15%). [Because from the data 10 log(Zh/
R) is better correlated to logZDR than ZDR, we choose

this form instead of 10 log(Zh/R) � f(ZDR), as sug-
gested by Illingworth and Blackman (2002).] However,
as indicated by the relatively large standard deviation, a
significant scatter is still present at R � 20 mm h�1.
With a combination of (KDP, ZDR) or (Zh, KDP) in

FIG. 1. Scatterplot of R derived from 1-min DSDs and RT estimated from various combinations of polarimetric parameters. The
relationships used to estimate R are first derived from the 5-yr disdrometric dataset. Using these derived relationships, RT is then
obtained from the same dataset. The scatter illustrates the effect of the DSD variability in the estimation of rainfall rate.

TABLE 1. Errors and derived relationships in the estimation of the rainfall rate with one or two polarimetric parameters. The same
dataset as in Fig. 1 is used and DSDs with reflectivity smaller than 10 dBZ are excluded. SD and SDFE are defined in (2). SIFT
represents the “sequential intensity filtering technique” with M � 10 one-minute DSDs and W � 1 h. The error represents the
theoretical limit of rain estimation with a single- or double-parameter technique resulting from the variability of DSDs.

Relationships SD (mm h�1) SDFE (%)

1-min DSDs 1: R � 2.33 � 10�2Z0.678
h (Zh � 256R1.47), Fig. 1a 3.7 61

2: R � 40.1K0.839
DP , Fig. 1b 2.3 34

3: R � 3.32 � 10�3Z0.940
h Z�1.13

DR , not shown 2.6 27
4: R � 2.02 � 10�2Z0.982

h 10�0.909ZDR, Fig. 1c 1.8 22
5: 10 log(Zh/R) � 26.8 � 17.8 logZDR � 7.43(logZDR)2, Fig. 1d 1.8 15
6: R � 59.4K1.03

DP Z�0.842
DR , Fig. 1e 1.3 17

7: R � 132K0.958
DP 10�0.441ZDR, not shown 1.3 21

8: R � 1.44 � 105Z�0.770
h K1.77

DP , Fig. 1f 1.1 23
SIFT DSDs 9: R � 2.34 � 10�2Z0.683

h (Zh � 244R1.46) 2.2 38
10: R � 40.8K0.850

DP 1.4 25
11: R � 3.62 � 10�3Z0.936

h Z�1.15
DR 1.6 17

12: R � 2.00 � 10�2Z1.01
h 10�0.988ZDR 1.1 18

13: 10 log(Zh/R) � 26.5 � 17.9 logZDR � 7.69(logZDR)2 1.3 13
14: R � 61.6K1.04

DP Z�0.875
DR 0.81 14

15: R � 185K1.01
DP 10�0.520ZDR 0.79 18

16: R � 3.76 � 105Z�0.861
h K1.87

DP 0.57 19
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Figs. 1e and 1f, the scatter at R � 10 mm h�1 is signifi-
cantly reduced, although the scatter at R of less than a
few millimeters per hour increases compared with the
form of the 10 log(Zh/R) � f(logZDR) relationships.
This reduction is indicated by the small standard devia-
tion (SD � 1.3 mm h�1). These results suggest a hybrid
algorithm for rainfall estimation, that is, the form of the
10 log(Zh/R) � f(logZDR) relationship for R � 5 mm
h�1 and R � aKb

DPZc
DR (Fig. 1e) or R � eZf

hKk
DP (Fig.

1f) for R � 5 mm h�1. Because KDP is quite small (less
than 0.1° km�1) and noisy when R � 5 mm h�1, the use
of ZDR in addition to Zh is quite advantageous with
light rain in terms of reducing the DSD variability.
However, as shown in section 5, a detailed analysis on
the propagation of measurement errors is necessary be-
fore concluding on the success of the form of the 10
log(Zh/R) � f(logZDR) relationship for light rain. In
addition, R estimation with R � eZf

hKk
DP is quite sen-

sitive to the assumed formula of drop deformation.
Hence, the relationship R � aKb

DPZc
DR is preferable for

R � 5 mm h�1, as suggested by Ryzhkov and Zrnic
(1995).

The disdrometric measurements are affected by “ob-
servational and instrumental noise” resulting from drop
sorting and small sampling volume (Chandrasekar and
Bringi 1987; Smith et al. 1993; Joss and Zawadzki 1997;
Lee and Zawadzki 2005a). Hence, the above analysis is
affected by disdrometric measurement errors. The sam-
pling volume of POSS is three orders of magnitude
larger than that of other disdrometers so that the in-
strumental noise resulting from statistical undersam-
pling is a second-order problem. The observational
noise resulting from the drop sorting depends on the
spatial structure of precipitation and dynamical fields.
However, this noise is less significant in measurement
from scanning radars that have a large sampling volume
(�1 km3) and sample rain fields instantaneously. To
eliminate the spurious variability while keeping the
physical variability in DSD measurements, Lee and
Zawadzki (2005a) applied a sequential intensity filter-
ing technique (SIFT). SIFT is a moving average of M
1-min DSDs, within a window of a specified time inter-
val W, and is ordered by increasing reflectivity. SIFT
can be applied simultaneously in space and time. For
polarimetric measurements, the noise in polarimetric
parameters can be filtered out by averaging within a
narrow interval of reflectivity. For example, an average
of ZDR is obtained from data points of similar reflec-
tivity data points within a window (W � 10° � 10 km �
10 min). Then, the averaged ZDR is transformed into R.
Thus, the measurement noise is reduced prior to the
transformation. SIFT is a way of analyzing noisy data.
However, it reduces the physical variability by smooth-

ing the physical variation of ZDR within the interval of
reflectivity. This reduction could be more pronounced
with a large window in which different physical pro-
cesses coexist. Thus, the use of proper windows and
averaging sizes is essential in order to minimize the
filtering of the physical variability. Because the multi-
parameter relationships from SIFT are independent of
the averaging size (appendix B), any flexible number of
data points can be averaged.

We derive the stable multiparameter relationships
that are independent of the averaging time. Specifically,
SIFT is applied for each day as a moving average of 10
one-minute DSDs (M � 10) after they have been or-
dered in terms of increasing Z within a time window of
1 h (W � 1 h). The same analysis as in Fig. 1 is per-
formed with these filtered DSDs. The statistics and de-
rived relationships are shown in Table 1 and are indi-
cated by “SIFT DSDs.” After applying SIFT, the physi-
cal variability is smoothed out and the time scale
becomes uncertain. However, an error analysis shows
that the DSD variability of SIFT DSDs is similar to that
of 30-min-averaged DSDs (see Figs. 2b and 4 of Lee
and Zawadzki 2005b). Thus, the derived statistics
should be interpreted at a similar time scale.

With a single parameter, SD and SDFE are drasti-
cally reduced after applying SIFT as a consequence of
noise elimination and filtering of some physical vari-
ability. The reduction of SDFE is especially pro-
nounced with the R � Zh relationship. However, SD
shows that about 60% of the original variance is re-
duced by SIFT. In other words, there is no preferential
decrease of SD in the R � Zh relationship. The rela-
tionship R � dZe

hKf
DP (relationship 16, Table 1) pro-

vides the smallest standard deviation, indicating the
best estimation of R for heavy rain. As indicated by
SDFE � 13% and SD � 1.3 mm h�1, the form of
10 log(Zh/R) � f(logZDR) (relationship 13, Table 1)
accurately estimates R for light rain and this accuracy
degrades with increasing R. With KDP and ZDR (rela-
tionship 14, Table 1), SD and SDFE are both relatively
small. In fact, after applying SIFT, any two polarimetric
parameters yield SD � 1.6 mm h�1 and SDFE � 20%,
regardless of the relationships used. Thus, these results
suggest that additional polarimetric parameters can sig-
nificantly improve the accuracy in R even after applying
SIFT for noisy data. From a practical point of view, we
need to determine which of the available parameters
are most free of measurement errors.

4. Comparison of the derived relationships with
those from literature

The relationships between R and polarimetric pa-
rameters are derived here from a large dataset that
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includes a variety of rain situations. However, most re-
lationships in the literature are derived from a model
DSD (the exponential or gamma function) with as-
sumed ranges of parameters of this DSD model (Sa-
chidananda and Zrnic 1987; Chandrasekar and Bringi
1988; Chandrasekar et al. 1990; Jameson 1994; Ryzhkov
and Zrnic 1995). Recently these relationships have
been obtained from a large dataset of measured DSDs
in a single climate (Ryzhkov et al. 2005). The range of
parameters in the gamma DSD model [i.e., N0, �, and �
of N(D) � N0D�e��D] was first derived by Ulbrich
(1983) from the exponents and coefficients of R–Z re-
lationships shown in Battan (1973). However, the R–Z
relationships are subject to a large uncertainty (40% of
natural variability reported in the literature) because of
the use of nonadequate regression methods in the pres-
ence of the scatter in R–Z plots (Lee and Zawadzki
2005a). Hence, the derived range of the DSD param-
eters may be doubtful. Illingworth and Blackman
(2002) illustrate that this range is unrealistic and the
relationship R � aZb

hZc
DR in the literature derived from

this unrealistic range yields an error of 3 dB in the
estimation of R. Furthermore, they argue that by using
the normalized form of gamma DSDs and a new range
of parameters of normalized DSDs, a new derived re-
lationship provides an error of 25% in R. Later, Bringi
et al. (2003) argued that some results of Illingworth and
Blackman (2002) were because of the overreliance on
the drop shape of Goddard et al. (1995). They also
showed that the Ulbrich (1983) range of the gamma
parameters is realistic. The use of a specific DSD model
may be useful in term of mathematical manipulation or
of microphysical parameterization in numerical models,
but this procedure smoothes out the physical variability
of DSDs. For example, the gamma DSD cannot de-
scribe the S-shaped DSD frequently observed in con-

vective situations (Fig. 7 of Sauvageot and Lacaux 1995;
Fig. 10 of Uijlenhoet et al. 2003; Fig. 4.7 of Lee 2003;
Fig. 1 of Montero-Martinez and Garcia-Garcia 2004;
Fig. 6 of Zawadzki and Lee 2004) and the bimodal
DSDs, and hence the gamma fit to these DSDs elimi-
nates the physical DSD variability. As a result, model
error is added to the other sources of uncertainty.

We now compare our derived relationships with
those from the literature that are derived from the DSD
models and measured DSDs in different climatic re-
gimes. This comparison should inform us of the appli-
cability of these relationships in the Montreal region
and of the stability of the multiparameter relationships
in these different regimes and different methods of
derivation. Table 2 summarizes the relationships shown
in the literature. Six formulas use Zh and ZDR, while the
other three use KDP and ZDR. Chandrasekar et al.
(1990) used the drop deformation by Green (1975),
which is similar to that of Pruppacher and Beard (1970).
The relationship from Chandrasekar and Bringi (1988)
is similar to that of Chandrasekar et al. (1990) and
hence is not included in the comparison. Note that,
although different from Chandrasekar et al. (1990), the
relationship from Bringi et al. (2003) is optimized for
the rain estimation (Chandrasekar et al. 1993; Gorgucci
et al. 1995). Illingworth and Blackman (2002) used the
formula of Goddard et al. (1995) for drop shape. Ryzh-
kov et al. (2005) used the drop shape of Andsager et al.
(1999) at 1.1 mm � D � 4.4 and the multiyear statistics
of measured DSDs at central Oklahoma. Figure 2
shows a comparison of these relationships for the same
category of drop deformation [Figs. 2a,b: Pruppacher
and Beard (1970); Fig. 2c: Goddard et al. (1995)] and
for the same combination of polarimetric parameters
(Fig. 2a,c: Zh and ZDR; Fig. 2b: KDP and ZDR) used. The
relationships from Ryzhkov et al. (2005) are not shown

TABLE 2. Relationships suggested in the literature and some characteristics.

Literature Relationship Drop deformation formula DSD model

Chandrasekar and Bringi (1988) R � 0.002397Z0.94
h Z�1.08

DR Pruppacher and Beard (1970) Gamma
Chandrasekar et al. (1990) R � 0.00198Z0.97

h Z�1.05
DR Green (1975) Gamma

Bringi et al. (2003) R � 0.00347Z0.945
h Z�1.457

DR Green (1975) Gamma
Jameson (1994) Zh/R � �14 597.1336 � 103 891.255

� 281 075.944 � 344 285.593 � 147
125.052 � 48 763.69 � 43 599.19
where  � Zh/Zv

Pruppacher and Beard (1970) Gamma

Ryzhkov and Zrnic (1995) R � 57.4K0.935
DP Z�0.704

DR (all range of R)
(RZ1)

R � 52.0K0.960
DP Z�0.447

DR (R � 20 mm h�1)
(RZ2)

Pruppacher and Beard (1970) Gamma

Ryzhkov et al. (2005) R � 0.0159Z0.737
h �1.03 Andsager et al. (1999) Measured DSDs

Ryzhkov et al. (2005) R � 63.3|KDP|0.851�0.72sign(KDP) Andsager et al. (1999) Measured DSDs
Illingworth and Blackman (2002) Zh/R � 21.48 � 8.14ZDR � 1.385Z2

DR

� 0.1039Z3
DR

Goddard et al. (1995) Normalized gamma
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in the figure and are used to derive statistics. The scat-
ter of points is derived from the disdrometric data using
the indicated formulas of drop deformation [Figs. 2a
and 2b: Pruppacher and Beard (1970); Fig. 2c: Goddard
et al. (1995)]. The solid lines indicate the best fit of
these points. When the exponent of Zh or KDP is not
equal to 1, the equation cannot be expressed as a single
line in the diagram. For this case, we draw two lines of
the same style corresponding to two rainfall intensities,
R � 1 mm h�1 (pointed by an arrow) and 100 mm h�1.
For example, for the relationship of Chandrasekar et al.
(1990) in Fig. 2a, the lower dashed line (pointed by an
arrow) is derived with R � 1 mm h�1 and the upper
dashed with R � 100 mm h�1. The hatched area in Fig.
2c comes from the simulated DSDs with the gamma
model (see Fig. 3 of Bringi et al. 2003).

The deviation from the best-fit curve to the data is
quite pronounced for most relationships except for
those from Bringi et al. (2003) and Illingworth and
Blackman (2002). The deviation from the best-fit curve
indicates bias, that is, an underestimation when the
lines are above the best fit and vice versa. In Fig. 2a, an
underestimation of R for a given Zh and ZDR is ex-

pected when ZDR � 1.5 dB with the relationship of
Chandrasekar et al. (1990). For example, the underes-
timation is around 1.5–2 dB (�40%–60%) at ZDR � 1
dB. However, a small bias (�1 dB) is expected at 0.5 dB
� ZDR � 1 dB with the relationship of Bringi et al.
(2003). In general, this relationship slightly overesti-
mates R. When compared with results from the rela-
tionship of Chandrasekar et al. (1990), the optimization
of the relationship for R estimate (Chandrasekar et al.
1993; Gorgucci et al. 1995) significantly reduces the
bias. However, as shown by the hatched area in Fig. 2c,
the simulated DSDs represent only a portion of the
overall data area. Thus, the simulated DSDs cannot
provide the full natural variability observed in Montre-
al. An overestimation of around 1 dB is introduced by
using the relationship from Jameson (1994) at 0.5 dB �
ZDR � 2.5 dB. For the form of R � aKb

DPZc
DR (Fig. 2b),

the two relationships (RZ1 and RZ2) from Ryzhkov
and Zrnic (1995) show different trends. As indicated by
the dotted line (pointed by the arrow), a significant
overestimation is noticed for RZ1 derived from all
ranges of R. However, RZ2 derived when R � 20 mm
h�1 is close to the best fit when 0.5 dB � ZDR � 1.5 dB.

FIG. 2. Comparison of various relationships from the
literature and actual DSDs. The best fits of data points
are shown as the solid line. The data points are derived
from observed DSDs by assuming the formula (a) and
(b) of Pruppacher and Beard (1970) and the formula (c)
of Goddard et al. (1995). The relationships from the
literature in (a) and (b) are derived from the gamma
DSD with a specific range of gamma parameters. Ill-
ingworth and Blackman (2002) in (c) use a normalized
gamma DSD with their derived range of gamma pa-
rameters. The hatched area in (c) comes from the simu-
lated gamma DSDs [see Fig. 3 of Bringi et al. (2003)].
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The relationship of Illingworth and Blackman (2002)
(dotted line in Fig. 2c), derived from the normalized
gamma DSDs with a new range of parameters of DSDs,
is quite close to the best fit over the wide interval 0.5 dB
� ZDR � 2 dB, indicating no significant bias. The re-
lationships from Ryzhkov et al. (2005) are significantly
different from R � 246K1.01

DP 10�0.523ZDR and R �
0.0101Z0.993

h 10�0.846ZDR, which are derived from our
data with the drop shape of Goddard et al. (1995).

Using the disdrometric dataset, we now quantify the
bias resulting from the deviation of these relationships
from the best fit. The scatterplot of R, derived from the
observed DSDs, with RT as estimated from the various
relationships listed in Table 2, is shown in Fig. 3. Note
that an underestimation is indicated by data points
above the diagonal line and vice versa. The normalized
bias is defined as follows from the scatterplot:

Normalized bias �

1
k �	RT � R


1
k �R

. 	3


Results from four relationships are only shown. By us-
ing the relationship from Bringi et al. (2003), as shown

in Fig. 3a, an overestimation of about 10% is intro-
duced when 2 mm h�1 � R � 30 mm h�1 and a large
overestimation (�20%) is shown for moderate rain (�1
mm h�1). When compared with Fig. 1c, the scatter (ran-
dom error) slightly increases. A significant bias is ob-
tained with the relationships by Jameson (1994), Chan-
drasekar et al. (1990), and RZ1. As expected from Fig.
2c, the relationship from Illingworth and Blackman
(2002) does not introduce any significant bias (less than
10%) for a wide range of R, 1 mm h�1 � R � 40 mm
h�1. The bias slightly increases when R � 0.5 mm h�1

and R � 50 mm h�1, as indicated by a deviation of the
relationship from the best fit (Fig. 2c). However, the
random error significantly increases (see Figs. 1d and
3b). The relationships from Ryzhkov et al. (2005) show
a bias of �10%–20% for a wide range of R. In addition,
the increase of the random error is noticeable, particu-
larly for the R � aZb

hc relationship. The degree of
scatter in Fig. 3d is comparable with R � Zh relation-
ship in Fig. 1a.

In summary, except for the relationship derived from
the normalized gamma DSD and the optimized rela-
tionship, all other DSD models yield a significant bias.
[It was not clear in the literature whether the optimi-

FIG. 3. (a)–(d) Scatterplot of R derived from observed DSDs and RT estimated from the various relationships suggested in the
literature, and the (e) normalized bias calculated from (a)–(d).
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zation procedure was applied for the other relation-
ships from Jameson (1994) and Ryzhkov and Zrnic
(1995).] The relationships of measured DSDs in central
Oklahoma show a bias of �10%–20%. In addition, the
random error significantly increases. These results sug-
gest an important issue on the variation of multiparam-
eter relationships in different climate regimes. Bringi et
al. (2003) stated “the Ulbrich range of DSDs is better
suited for tropical rain than for midlatitude continental
rain.” (The author thinks that the range should be more
relevant for the global average because it was derived
from various R–Z in different climate regimes.) We
have compared relationships from four different cli-
mate regimes [Tropics for Bringi et al. (2003), the
United Kingdom for Illingworth and Blackman (2002),
Oklahoma for Ryzhkov et al. (2005), and Montreal for
our analysis]. Thus, the systematic change of the mul-
tiparameter relationships in different climate regimes
provides a systematic bias of �10%–20% and signifi-
cant random errors. Because the stratiform precipita-
tion is dominant in the United Kingdom and Montreal,
similar relationships are more reasonable. In Oklaho-
ma, where strong convective precipitation is dominant,
the relationship could be significantly different from
that of Montreal.

5. Relative importance of the DSD variability and
measurement noise

The variability of the measured polarimetric param-
eters by scanning radar is a combined effect of the DSD
variability and of the measurement noise. When the
latter is a significant fraction of the variation of KDP

and ZDR resulting from the DSD variability, the appli-
cation of these measurements causes an additional un-
certainty in rain estimation. Furthermore, the reduction
of the DSD variability using these parameters could be
masked by measurement noise. Sachidananda and Zr-
nic (1987) tried to evaluate the degree of observational
noise by comparing the scatterplot of Zh and ZDR or
KDP from actual measurements and the DSD variabil-
ity. They used simulated DSDs to derive the DSD vari-
ability. As they alluded, and as shown in Fig. 2c, the
DSD variability is quite limited by using simulated
DSDs from the gamma model, and their simulated
DSDs do not fully describe the natural variability of
DSDs in Montreal. In this section, we quantify the ef-
fect of DSD variability on polarimetric parameters
from actual disdrometric measurements rather than
from a specific DSD model. This effect is compared
with the measurement noise deduced from the litera-
ture as well as from actual measurements by the McGill
S-band operational polarimetric radar.

a. Variation of ZDR resulting from the DSD
variability

Figure 4 shows a scatterplot of ZDR and Zh from 5 yr
of disdrometric data and the SD and the normalized
standard deviation (NSD) as a function of average Zh at
2-dBZ intervals. Both SD and NSD are obtained with
respect to the average differential reflectivity ZDR,avg

(solid line). The detailed frequency distributions of
(ZDR,avg � ZDR) and its comparison with a Gaussian
distribution are shown in appendix C. The ZDR � Zh

pairs (circles in Figs. 4a and 4c) are derived from the
average DSDs of the entire dataset in 2-dB intervals of
Zh. Results from M–P DSDs (dashed line) and �SD
(vertical bars) are also shown. The ZDR from M–P
DSDs is higher than the one from average DSDs, par-
ticularly when Zh � 35 dBZ, indicating that the M–P
DSDs have a greater concentration of larger drops than
the average DSDs. The scatter representing the effect
of the DSD variability on ZDR is quite small. Here SD
�0.2 dB for Zh � 37 dBZ, then peaks at 0.3 dB around
Zh � 43 dBZ. NSD decreases with Zh, remaining of the
order of 20% for Zh � 30 dBZ.

The scatter in Fig. 4a is the final outcome of the
disdrometric measurement noise and physical variabil-
ity of DSDs. From appendix A, the instrumental noise
of the differential reflectivity resulting from the under-
sampling effect and retrieval algorithm should be less
than 0.068 dB for 1-min DSDs. Thus, about 88%–95%
of the variance could be due to the physical variability
of DSDs when we neglect the measurement noise
caused by wind effects. As the temporal averaging in-
terval increases, the contribution from the DSD mea-
surement noise should become negligible (appendix A)
and the remaining scatter should be the result of only
the physical variability. A similar analysis for 30-min-
averaged DSDs shows the reduction of the scatter. This
reduction is related to the elimination of DSD measure-
ment noise and the filtering of some physical variabil-
ity. Because the DSD measurement noise is insignifi-
cant at this temporal smoothing, the overall scatter
should be due to the physical variability. The results
show SD � 0.19 dB for Zh � 22 dBZ, decreasing to 0.15
dB for 25 dBZ � Zh � 30 dBZ, and then peaking at
0.22 dB around Zh � 41 dBZ. NSD is less than 18% for
Zh � 30 dBZ. In practice, the accuracy in ZDR calibra-
tion is around 0.1–0.2 dB, achieved with a polarimetric
radar pointing vertically to which a random measure-
ment noise must be added. Thus, this accuracy is quite
comparable with the SD because of the physical vari-
ability with an averaging time of 30 min. When the
degree of measurement noise is similar to the SD be-
cause of the DSD variability, we cannot expect a sig-
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nificant improvement in rain estimation, and the reduc-
tion of the DSD variability by using polarimetric infor-
mation is masked by the measurement noise. Thus, the
measurement noise should be kept less than the SD in
ZDR shown in Fig. 4.

b. Errors in R resulting from the DSD variability
and measurement noise

The accuracy in estimating R is affected by the DSD
variability as well as measurement noise in polarimetric
parameters. Similar to the DSD variability, the mea-
surement noise in polarimetric parameters propagates
into the estimation of R. When y is a function of two
variables y � f(x1, x2), the uncertainty in y can be ex-
pressed in terms of the uncertainty in x1 and x2 (Bev-
ington 1969),

�y
2 ≅ �x1

2 � �y

�x1
�2

� �x2

2 � �y

�x2
�2

� 2�x1x2

2 � �y

�x1
�� �y

�x2
�,

	4


where �y is the standard deviation of y resulting from
the measurement errors �x1

and �x2
; �2

x1x2
is the covari-

ance between x1 and x2. When R is estimated from two
polarimetric parameters as in R � aKb

DPZc
DR, we can

express the normalized standard deviation �R/R with
the following equation:

�R

R
� ��b

�KDP

KDP
�2

� �c
�ZDR

ZDR
�2�1�2

. 	5


Here, we assume that the measurement noise in KDP

and ZDR is uncorrelated (�2
x1x2

� 0). This equation il-
lustrates the propagation of the measurement error in
KDP and ZDR into the estimation of R. Using this equa-
tion and an assumed measurement noise of �Zh

� 1.0
dB, �ZDR

� 0.17 dB, and �KDP
� 0.11° km�1, the uncer-

tainty (�R,obs/R) resulting from this noise is calculated
for the four relationships shown in Table 1 (relationships
9, 10, 13, 14). The results are shown as dashed lines in
Fig. 5.

According to Gorgucci et al. (2002), given an accu-
racy of 2.5° in differential phase shift �DP with a typical

FIG. 4. (a), (c) Scatterplot of ZDR and Zh calculated from 1- and 30-min-averaged disdrometric data. Here
ZDR,avg indicates the average ZDR for 2-dB intervals of Zh. The dashed line is derived from Marshall and Palmer
(1948) DSDs and the circles from average DSDs of 5-yr data at 2-dBZ intervals. The vertical bars indicate the
standard deviation of ZDR. (b), (d) SD and NSD in estimating ZDR with respect to ZDR,avg � Zh pairs.
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150-m range spacing, the measurement noise of 0.11°
km�1 is expected in KDP over a path of 6 km. They also
reported that the typical accuracy of Zh and ZDR is
about 1 and 0.2 dB, respectively. Ryzhkov and Zrnic
(1995) also obtained the assumed measurement noise
from the Cimarron radar with 64 sample pairs at 150-m
range resolution and with a 4-km range smoothing. The
�Zh

can be theoretically smaller than 1 dB, but this
value is more realistic when we consider the uncertainty
in radar calibration. In the case of the McGill radar (6
rpm), the measurement noise is greater.

The uncertainty (�R,DSD/R, dash-dotted lines), result-
ing from the DSD variability, is derived for raw 1-min
DSDs as a function of rainfall intensity in a way similar
to those from Table 1 and Fig. 1. The expected total
error (�R,tot/R, solid line), resulting from the combined
effect of the DSD variability and measurement noise, is
obtained from the following equation:

�R,tot�R � �	�R,DSD�R
2 � 	�R,obs�R
2�1�2. 	6


Here �R,DSD/R for heavy rain is not calculated because
of the small number of data, so that �R,DSD/R at R � 40
mm h�1 is used for greater rain intensities. As reported
in section 3 and the literature, results show that the
DSD variability is a dominant factor in the conven-
tional R � Zh relationship while it is less important in
estimating R with polarimetric parameters. The
�R,DSD/R with R � Zh (Fig. 5a) has a minimum at mod-
erate rain intensity (R � 7 � 10 mm h�1). That with R
� KDP (Fig. 5b) shows a similar trend, except for an
overall reduction of �10%–25%. The reduction of the
effect of the DSD variability is significant with the
R–(Zh, ZDR) and R–(KDP, ZDR) relationships (Figs. 5c
and 5d) being �R,DSD/R � 20% over the entire range of
R with the latter. However, it is to be noted that these
�R,DSD/R include the DSD measurement noise of
POSS. Thus, the actual �R,DSD/R should be smaller than
these values.

The effect of radar measurement noise on rain esti-
mates with a R � Zh relationship is less than 20%; the
DSD variability is the key factor in the total error. Al-

FIG. 5. (a)–(d) Normalized standard deviation in R for the indicated relationships resulting from the DSD
variability (�R,DSD/R) and measurement noise (�R,obs/R). The total error (�R,tot/R), which is a combination of
�R,DSD/R and �R,obs/R, is indicated by the solid line. For comparison, the total error from the conventional R � Zh

relationship in (a) is shown in all figures as a dotted line.
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though the effect of the DSD variability is significantly
reduced with the R–(Zh, ZDR) in Fig. 5c, there is no
significant reduction of the total error because of the
larger measurement error in ZDR. The conventional R
� Zh relationship performs better than R–(Zh, ZDR) at
the range of R � 2 � 20 mm h�1. Hence, a reduction in
the measurement error of ZDR is necessary in order to
achieve a better accuracy than that from the conven-
tional R � Zh relationship. This should be obtained by
increasing the number of radar samples with averaging
ZDR over a longer range and time interval or with dif-
ferent scanning strategies. The uncertainty resulting
from the measurement noise for the two relationships
that include KDP in Figs. 5b and 5d is dominant when R
� 14 mm h�1. The total error becomes less than that
from the R � Zh relationship only when R � 20 mm
h�1, thus limiting the advantage of KDP to heavy rain.
To extend this advantage to lower rain intensities, the
increase of radar samples is essential as with ZDR.

By applying the temporal smoothing, some of the
DSD variability is filtered out and the DSD measure-

ment noise becomes insignificant. Radar measurement
noise can also be reduced by temporal smoothing over
the volume scans. Figure 6 shows the total error from
the four formulas with different temporal smoothing.
We assume that a radar volume scan is performed every
5 min. The return time of radar samples is every 5 min.
This figure illustrates how polarimetric algorithms can
improve on the conventional R–Zh relationship by
smoothing data obtained from successive scanning
cycles. The R–(Zh, ZDR) relationship outperforms R �
Zh with 10-min smoothing over the entire range of rain
intensity. The difference between the two algorithms
increases with temporal smoothing, indicating that the
reduction of radar measurement noise is more signifi-
cant than that of the DSD variability. After an hour, the
difference is about 10% at R � 2 mm h�1 (from about
30% to 20%). This is more a pronounced improvement
than the results of Brandes et al. (2003) who showed an
improvement from 47% for R � Zh to 38% for R–(Zh,
ZDR) (see their Table 3). As the temporal smoothing
increases, the minimum rainfall intensity from which

FIG. 6. The total error (�R,tot/R) for three
different temporal smoothing.
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the R � KDP or R � (KDP, ZDR) algorithms outperform
R � Zh decreases from R � 14 mm h�1 to R � 7 mm
h�1, suggesting that the smoothed KDP also can im-
prove the accuracy in moderate rain. The R � (KDP,
ZDR) algorithm always performs best in heavy rain with
a total error of less than 20%.

We can determine the standard deviation (�ZDR,R�Z)
in ZDR required in order that the R–(Zh, ZDR) and R �
Zh algorithms yields the same accuracy for a given tem-
poral smoothing. We call �ZDR,R�Z the marginal mea-
surement error. We derive �ZDR,R�Z for which the solid
and dashed lines in Fig. 6 cross over. We have fixed the
measurement noise at �Zh

� 1.0 dB at instantaneous
radar measurements (every 5 min) and have assumed
that �Zh

decreases with temporal smoothing by 1/(num-
ber of radar volume scans)0.5. Figure 7 shows �ZDR,R�Z

at three different temporal smoothings, and its average
value is shown in Table 3. In general, there is no sig-
nificant difference among the three smoothings. The
variation of �ZDR,R�Z with R is within the �0.13–0.2 dB
limits (Fig. 7). The average over the entire range of R is
essentially unchanged at �0.15–0.16 dB for the three
smoothings selected (Table 3). This is the maximum
noise level required to outperform the R � Zh relation-
ship for the assumed volumetric scanning strategy. This
unchanged noise level implies that instantaneous radar
measurements could be noisier as long as they are
temporally averaged. In general, this analysis suggests
that, for the assumed scanning strategy, the R–(Zh,
ZDR) algorithm can outperform the R � Zh with mini-
mal smoothing when the measurement noise is below
0.2 dB. For a scanning strategy consisting of only a
lowest PPI instead of a volumetric scan, the measure-
ment noise could be larger because the return time of

radar measurements is shorter. For example, for a re-
turn time of 1 min, the measurement noise could be as
much as 0.5 dB by assuming that �ZDR

decreases with
temporal smoothing by 1/(number of radar measure-
ments)0.5.

c. Measurement noise with the McGill S-band
polarimetric radar

For meteorological purposes, fast scanning (�3 rpm)
is essential in order to increase the effectiveness of se-
vere weather surveillance with data that are frequently
updated. Hence, the dwelling time for each pixel (i.e.,
1° � 1 km) is relatively short and the number of pulses
is small. With the McGill S-band operational polarimet-
ric radar (6 rpm), the number of independent samples is
less than 20 at the resolution of 1° � 1 km. However,
the results of Figs. 5 and 6 are based on assumptions
adequate for a slow scanning radar (�1 rpm), where the
number of the independent sample is much larger.
Hence, we cannot expect the same quality of data from
the McGill radar that require a fast scanning rate (�3
rpm). For example, �Zh

� 1.2 and 0.7 dB with 20 and
100 independent samples, respectively (Smith 1964).
Therefore, more temporal or spatial smoothing is
needed in order to achieve the accuracies shown in
Figs. 5 and 6, resulting into a degradation of the tem-
poral or spatial resolution. The nonhomogeneity of the
precipitation field should then also be considered as
another source of uncertainty (Gorgucci et al. 2000).
On the other hand, the simultaneous sampling of the
horizontally (H) and vertically (V) polarized signals has
less measurement uncertainty in polarimetric param-
eters than the nonsimultaneous sampling (i.e., switched
H/V on transmit and copolar receive) (Gingras et al.
1997).

FIG. 7. The marginal measurement errors (�ZDR,R�Z) in ZDR to
have the same accuracy between R�(Zh, ZDR) and R � Zh algo-
rithms at a given temporal smoothing.

TABLE 3. Standard deviation in (ZDR,avg � ZDR) resulting from
the DSD variability (�ZDR,DSD

), measurement noise (�ZDR,obs), and
their combination (�ZDR,tot) at different temporal smoothings,
where ZDR,avg indicates the average ZDR as a function of Zh;
�ZDR,DSD is calculated from 5 yr of disdrometric data, and �ZDR,tot

is from data of five storms (26 h) collected by the McGill S-band
operational polarimetric radar at a resolution of 1° � 1 km and
every 5 min. �ZDR,obs is deduced from �ZDR,DSD and �ZDR,tot using
(6), and �ZDR,R�Z is the marginal measurement noise required to
achieve the same accuracy in R with R–Zh and R–(Zh, ZDR) (see
Fig. 7).

�ZDR,DSD

(dB)
�ZDR,tot

(dB)
�ZDR,obs

(dB)
�ZDR,R�Z

(dB)

No averaging 0.22 0.35 0.27 0.16
10-min averaging 0.20 0.30 0.22 0.16
30-min averaging 0.19 0.26 0.18 0.15
60-min averaging 0.19 0.23 0.13 0.15
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Consequently, the simultaneous sampling may be a bet-
ter solution for the fast scanning radar, in terms of less
degradation of the temporal or spatial resolution. The
polarimetric Next-Generation Weather Radar
(NEXRAD) prototype utilizes the simultaneous sam-
pling (Doviak et al. 2000). McGill implementation of
polarimetry is based on transmission at slant polariza-
tion and simultaneous reception of separated channels
for H and V.

Figure 8 shows the frequency distribution, SD, and
NSD of measured ZDR as a function of measured Zh

from the McGill S-band operational polarimetric radar
that uses the simultaneous sampling method. Polari-
metric parameters are first obtained at a resolution of
1° � 1 km every 5 min (Figs. 8a and 8b), which is then
smoothed to 1° � 1 km by 30 min (Figs. 8c and 8d). The
detailed distributions of (ZDR,avg � ZDR) are shown in
appendix C. The diagram illustrates all the variability
(�ZDR,tot) resulting from the measurement noise and the
DSD variability. The SD and NSD statistics at 1° � 1
km are particularly larger than those from the DSD
variability from disdrometric data (see Fig. 4), indicat-
ing that the measurement noise with a scanning radar is

more important than the DSD variability. The distribu-
tion is narrowed by temporal smoothing at 1° � 1 km
by 30 min, confining SD within 0.2–0.3 dB throughout
most of the range of Zh. However, SD is still larger than
that from the DSD variability after applying the tem-
poral smoothing of 30 min (Fig. 4d).

We attempt to quantify the measurement noise
(�ZDR,obs) in ZDR by comparing the DSD variability
(�ZDR,DSD) and the total variability (�ZDR,tot); �ZDR, DSD

is derived from disdrometric data with different tem-
poral smoothings (1, 10, 30, 60 min) as in Fig. 4, and
�ZDR,tot is also obtained for four temporal resolutions
from the radar measurements as in Fig. 8. Both
�ZDR,DSD and �ZDR, tot are derived over 20 dBZ � Zh �
50 dBZ. Then, the measurement noise �ZDR,obs is calcu-
lated from �ZDR,DSD and �ZDR,tot using (6). The results
are shown in Table 3 for the four kinds of DSD vari-
ability (or temporal smoothing). If we accept the time–
space analogy, the standard deviation resulting from
the physical variability of DSD should be between 0.22
(1-min-averaged DSDs) and 0.19 (60-min-averaged
DSDs) dB, depending on the temporal smoothing. The
�ZDR,obs significantly decreases with temporal smooth-

FIG. 8. (a) Frequency distribution of ZDR as a function of Zh from the operational S-band McGill polarimetric
radar for five storms at a spatial resolution of 1° � 1 km. The grayscale indicates number of data points. The solid
line indicates the average of ZDR. (b) SD and NSD with respect to the average of ZDR. (c), (d) Same as in (a) and
(b), except for the smoothing of Zh and ZDR at 30 min.
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ing, but this reduction is less than that predicted by
1/(number of radar volume scans)0.5. After smoothing
over 30 min, �ZDR,obs (�0.18 dB) is less than �ZDR,DSD

(�0.19 dB) but still is larger than the marginal mea-
surement noise �ZDR,R�Z (�0.15 dB). Averaging over 1
h is required for the McGill S-band radar in order to
reach the condition, �ZDR,obs � �ZDR,R�Z, which would
enable the R–(Zh, ZDR) to outperform the conventional
R � Zh relationship.

An analysis similar to Fig. 5 is performed with �ZDR,obs

in Table 3 and with �Zh
� 1.0 dB. The total errors are

only shown for the R�Zh and R–(Zh, ZDR) algorithms
(see Fig. 9). The accuracy of R–(Zh, ZDR) is worse than
that of R � Zh up to 30-min smoothing. The R–(Zh,
ZDR) algorithm outperforms the R � Zh algorithm only
after applying a 1-h smoothing. This poor performance
of R–(Zh, ZDR) is due to the small number of samples
that can be collected with the McGill S-band radar at
the fast scan rate of 6 rpm. With a scan rate of 3 rpm,
�ZDR,obs should be less than �ZDR,R�Z with only a 30-min
smoothing and the R–(Zh, ZDR) algorithm should be
more skillful than R � Zh. This supports the recent

analysis by Ryzhkov et al. (2005) who demonstrate the
superiority of R–(Zh, ZDR) for hourly rain accumula-
tions with a volumetric scan at a scan rate of 3 rpm.

We should raise the question of the representative-
ness of the DSD variability. The calculated �ZDR,DSD is
from 5 yr of disdrometric data whereas the radar data
include the DSD variability for only five storms. Hence,
�ZDR,DSD for these five storms is likely less than the
value shown in the table because the DSD variability
from the five storms may not include all variability in-
cluded in the 5-yr disdrometric dataset. Thus, we can
expect even larger �ZDR,obs. Therefore, the temporal
smoothing at an hour should be taken as a minimum
requirement for obtaining improved rain estimates
from the McGill S-band operational polarimetric radar
at the current scanning strategy.

6. Conclusions

Five years of disdrometric data has been obtained
with Precipitation Occurrence Sensing System (POSS).

FIG. 9. Same as in Fig. 6, except for the derived measurement noise from the McGill S-band polarimetric radar
shown in Table 3.
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Because of the large sampling volume of POSS (three
orders of magnitude larger than the traditional dis-
drometer), the sampling Poisson noise is a second-
order problem and larger drops are well detected (ap-
pendix A). Hence, the data are suitable for quantifi-
cation of the DSD variability that is encountered
with radar measurements. Twenty-six hours of radar
data for five storms are obtained from the McGill S-
band operational polarimetric radar collected with
volumetric scans at a fast scanning speed of 6 rpm.
Hence, we expect the measurement noise to be much
higher than that from slow scanning radars [note that
most of the radar data in the literature were obtained
from a slow scanning speed of �1 rpm except for Ryzh-
kov et al. (2005)]. Using both sets of data, sources of
errors in rain measurement with polarimetric radar are
explored in order to investigate their relative impor-
tance and the feasibility of a polarimetric technique for
the estimation of R in the context of the McGill S-band
operational radar. The sources of errors considered are
the DSD variability, observational noise, and the varia-
tion of the relationships between R and polarimetric
parameters. We have reached the following conclu-
sions.

1) In agreement with published work, under ideal con-
ditions the additional information from polarimetric
radar drastically reduces the effect of the DSD vari-
ability in the estimation of R (Fig. 1 and Table 1).
The form of the 10 log(Zh/R) � f(logZDR) relation-
ship shows the best accuracy in light and moderate
rain while R � aKb

DPZc
DR or R � dZe

hKf
DP relation-

ships perform better with heavy rain. However, the
R � aKb

DPZc
DR relationship is preferred with heavy

rain because the reduction of the DSD variability
with R � dZe

hKf
DP is very sensitive to the choice

among the various drop deformation formulas given
in the literature.

2) The relationships in the literature that are derived
from the DSD model and measured DSDs differ
from those derived from our disdrometric dataset
(Fig. 2). Use of these relationships for the data in
Montreal region results in a bias (�10%–20%) and
significant random errors resulting from the DSD
variability (Fig. 3). These results illustrate a system-
atic variation of these relationships in different cli-
mate regimes. This could be explained by the fact
that the polarimetric relationships cannot account
for all the DSD variability. Thus, the optimization of
these relationships in a local environment is essen-
tial.

3) For the dataset observed in Montreal region, the
standard deviation of ZDR resulting from the DSD

variability (�ZDR,DSD) is derived as a function of Zh

and temporal smoothing. Here, �ZDR,DSD varies
from 0.22 dB for 1-min DSDs to 0.19 dB for 60-min
average DSDs. These values should be considered
as the limiting level of measurement noise of ZDR

needed to improve rain estimation with polarimetric
parameters.

4) By assuming measurement noises of �Zh,obs � 1 dB,
�ZDR,obs � 0.17 dB, and �KDP,obs � 0.11° km�1 that
are expected from a slow scanning radar (�1 rpm)
with range smoothing over a 4-km pathlength, the
combined effect of the DSD variability and of mea-
surement errors in the estimation of R is investi-
gated for various rain estimation relationships (Figs.
5–6). The accuracy of 10 log(Zh/R) � f(logZDR) is
comparable with the conventional R � Zh relation-
ship for instantaneous radar measurements, the
latter being �40%–65%. However, with minimal
smoothing (�10 min or two radar scans), the 10
log(Zh/R) � f (logZDR) algorithm outperforms
R � Zh, confirming the advantage of polarimetric
rain estimation. The accuracy of R � Zh is reduced
to �35%–55% at this temporal scale. When KDP

is included in the relationship, the error in R is
less than that of R � Zh only when R � 7 mm h�1

for an hourly accumulation. This analysis also
leads to the marginal measurement noise (�ZDR,R�Z)
of �0.15–0.16 dB at which the R � Zh and
10 log(Zh/R) � f(logZDR) algorithms are compa-
rable.

5) The measurement noise of the McGill S-band fast
scanning operational radar is quantified at four tem-
poral resolutions by comparing the standard devia-
tion of ZDR from radar observations with that re-
sulting from the effect of the DSD variability (Fig. 8
and Table 3). The measurement noise decreases
from 0.27 dB for instantaneous measurements to
0.13 dB for data smoothed over 60 min. The form of
10 log(Zh/R) � f(logZDR) can improve only hourly
accumulations for the McGill S-band radar and pos-
sibly 30-min accumulations for the polarimetric
NEXRAD prototype.

We have explored several sources for the uncer-
tainty in R estimation with polarimetric parameters
and quantified the expected errors. None of them
can be neglected. In addition, as in conventional ap-
proach, the range effect resulting from radar beam
broadening and the increases of measurement height is
a significant factor that degrades the accuracy in R.
Therefore, careful consideration on these sources is
recommended before applying a polarimetric tech-
nique.
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Last but not least, we should point out that our
simulation of radar measurements from DSDs implies
a resolution volume that is smaller than the typical
operational radar measurement volume. We have
tried to compensate for the discrepancy by taking av-
erages and considering long-term observations, but the
problem of representativeness may still partially be
present.
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APPENDIX A

Uncertainties in POSS Measurements

a. Comparison of two collocated POSSs

POSS measures Doppler spectra near the ground
and converts them into DSDs. This conversion pro-
cedure and the effect of winds have been tested
by Sheppard (1990) and Sheppard and Joe (1994).
In addition, we have eliminated N(Di) when the
total number of drops is less than 10 [Ntot(Di) � 10]
for all of the data analysis to minimize the under-
sampling effect (Lee and Zawadzki 2005a). In this
appendix, we quantify the instrumental uncertainties
of POSS by comparing data measured from two
collocated POSSs for a period of 13 rain days.
This comparison quantifies the uncertainty result-
ing from the undersampling and DSD retrieval algo-

FIG. A1. Scatterplots of polarimetric parameters derived from 1-min-averaged DSD measurements with the two
collocated POSSs.
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rithm. Polarimetric parameters are calculated from
DSDs with a scattering model. The scatterplots of
Zh, R, ZDR, and KDP (Fig. A1) show a good agree-
ment between the two POSSs. Each point is de-
rived from 1-min DSDs and no filtering is applied.
The small scatter is due to the DSD measurement
errors of the two POSSs and to time mismatches
(less than a minute) between them. In addition,
their spatial distance also contributes to the scatter.
By assuming that the standard deviation of measure-
ment error distributions (�err) in the two POSSs
are identical and both errors are uncorrelated, we
have calculated �err in a way similar to that of Eq. (6).
Because the two POSSs obtain DSDs with the
same principle and are collocated, these assump-
tions should be valid. A similar calculation is performed
with the temporal smoothing of DSDs up to 40 min.
Results from raw measurements (averaging size � 1)
show that �err,Zh

� 0.96 dB, �err,ZDR
� 0.068 dB,

�err,10 logR � 0.82 dB, and �err,10 logKDP
� 0.30 dB (see

Fig. A2). However, the actual measurement noise
should be smaller than the calculated �err because of
the time mismatches and spatial distance. The errors
rapidly reduce with an initial 10-min averaging time
(about 10% for R and Zh, 3% for KDP, and 1% for
ZDR). A further averaging does not reduce them dra-
matically except for �err,10 logKDP

. In general, these re-
sults suggest that the measurements errors in POSS
measurements resulting from the undersampling and
retrieval algorithm can be neglected after 10-min aver-
aging.

b. Comparison of collocated POSS and JWD

We have stated that the POSS measures bigger drops
effectively because of the large sampling volume. This
is evident in Figs. 6–9 of Sheppard and Joe (1994) for a
limited number of DSDs. The comparison of collocated
POSS and JWD is shown in Fig. A3 for over 4000
1-min-averaged DSDs measured for eight rain events in
Montreal. Both R and Z are calculated at the range D
� 0.8 mm in both JWD and POSS to avoid the im-
proper dead correction and wind effects of JWD. No
clear bias is present in R, whereas Z shows a systematic
bias when Z � 25 dBZ. That is, the JWD underesti-
mates Z. This can be explained by the difference in the
sampling volumes of the two instruments. Because the
sampling volume of POSS is three orders of magnitude
larger than that of JWD, bigger drops are effectively
well measured as shown in Fig. A3c.

The average DSDs from both instruments for the
entire period are calculated by including all zero drop
bins [N(D) � 0 m�3 mm�1]. An exclusion of zero drop
bins would have provided a positive bias in average
DSDs. This bias is more noticeable for a disdrometer
that has a small sampling volume. In this way, the av-
erage of integral parameters of DSDs is the same as
those derived from the average DSD [see Eqs. (1) and
(2) of Lee and Zawadzki (2005a)]. The average DSDs
of the entire DSDs are almost identical when 0.9 � D
� 2.0 mm. (Note that the difference for D � 0.9 mm is
caused by the inaccurate dead correction and wind ef-
fects of JWD.) However, when D � 2.0 mm, the JWD
systematically underestimates. In summary, this figure
illustrates the importance of a large sampling volume
for properly detecting bigger drops.

APPENDIX B

Effects of SIFT on the Multiparameter
Relationships

Lee and Zawadzki (2005a) used the sequential inten-
sity filtering technique (SIFT) as a way of reducing in-
strumental and observational noises in disdrometric
measurements, thus enabling real datasets to reveal the
underlying microphysics. They show that SIFT provides
a stable R–Z relationship that is independent of aver-
aging time. As shown in section 5c, the polarimetric
parameters from the McGill S-band radar have a large
measurement noise that should be eliminated before
transforming the parameters into R. Because most mul-
tiparameter relationships are nonlinear, it is crucial to
eliminate noise before transforming the parameters
into R. SIFT reduces the fluctuations of polarimetric
parameters within a narrow interval of reflectivity.

FIG. A2. Measurement errors of polarimetric parameters
resulting from instrumental noise in the POSSs.
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When different microphysical processes are included in
a SIFT window, some physical variability is also filtered
out. However, we are confident that SIFT mainly re-
duces the physical variability that is related to the sys-
tematic change of the generic shape of DSDs within a
window of SIFT. We reach this conclusion from the
collapse of all measured DSDs into a well-defined
double-moment normalized DSD after applying SIFT
(not shown in here). Therefore, following SIFT, most
discernible DSDs can be described by the change in the
intercept and slope parameters (i.e., the characteristic
number density and diameter or two moments of
DSDs; Lee et al. 2004) that are closely related to pola-
rimetric parameters. Nevertheless, SIFT also improves
the accuracy of R with polarimetric parameters al-
though this improvement is more pronounced in a
single parameter (R–Zh and R–KDP; see Table 1). An
error analysis shows that SIFT and 30-min-averaged
DSDs yields comparable accuracy in R (see Figs. 2b and

4 of Lee and Zawadzki 2005b). However, we need to
identify a proper time scale for SIFT. In this paper, we
suggest SIFT as a way of filtering out noisy polarimetric
parameters from the McGill S-band radar. While some
physical variability is undesirably reduced, it can be
minimized by combining data in space and time. We
can confine the window size of SIFT into a space–time
domain (i.e., 10° � 10 km � 10 min) where the change
of microphysics should be minimal and the number of
data should be sufficient to apply SIFT.

We need to ensure that SIFT can provide a stable
relationship between R and the polarimetric param-
eters as is the case with the R–Z relationship. For the
climatological DSD dataset used in Table 1, we have
applied SIFT with an averaging time from 1 to 30 min
while fixing the window size (W � 1 h). DSDs within an
hour are sorted with increasing Z and then the moving
average of �1–30 min is applied. Multiparameter rela-
tionships are then derived at each averaging time and

FIG. A3. Comparison of collocated POSS and JWD measure-
ments. Over 4000 one-minute DSDs are obtained during eight
rain events. To avoid the noisy measurements for D � 0.8 mm
resulting from the inaccurate dead time correction and wind ef-
fects in JWD, R and Z are calculated at the range D � 0.8 mm
for both JWD and POSS.
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are shown in Fig. B1. This diagram illustrates how well
SIFT derives a stable relationship that is independent
of the averaging time. There is no significant change of
R � aKb

DP and 10 log(Zh/R) � f(logZDR) for the entire
range of the averaging time. A slight change is noticed
in R � aZb

h10cZDR and R � aKb
DP10cZDR when the aver-

aging size � 10 min. In general, the relationships be-
come stable after applying SIFT with an averaging time
of 10 min, emphasizing the effectiveness of SIFT in
stabilizing the relationships. When applying SIFT with
actual radar measurements, the averaging size can be
any minimum value that depends on the level of noise.
The averaging of polarimetric parameters within a nar-
row interval of Z followed by a transformation into R
using the relationships (Fig. B1) should increase the
accuracy in R when using the noisy measurements from
the McGill S-band polarimetric radar.

APPENDIX C

Distributions of the Difference between ZDR,avg

and ZDR

In Figs. 4 and 8, the distributions of ZDR and the
standard deviations of (ZDR,avg � ZDR) were shown
as a function of Zh. Then, �(ZDR,avg � ZDR),DSD and
�(ZDR,avg � ZDR),tot were derived to quantify the effect of
the DSD variability and of measurement noise. In this
appendix, we show whether �(ZDR,avg � ZDR),DSD or
�(ZDR,avg � ZDR),tot is statistically meaningful. Figure C1

shows the frequency distributions of (ZDR,avg � ZDR)
for DSDs and radar observations with different tempo-
ral smoothing. Note that the values of ZDR,avg are a
function of Zh (solid lines in Figs. 4a, 4c, 8a, and 8c).
The standard deviations of these distributions are the
same values seen in Table 3. The distributions are al-
most symmetric with a bias of zero. These distributions
are compared with a Gaussian distribution (dashed
lines) of the same standard deviation and mean. Results
show that the measured distributions follow well the
Gaussian distribution. Thus, we can consider that the
derived standard deviation from these distributions has
a statistically similar meaning as the Gaussian distribu-
tion.

The distributions are the outcome of the measure-
ment noises with POSS or radar and of the physi-
cal variability. Thus, the narrower distributions with
temporal smoothing are due to the reduction of both
of these causes. Because the measurement noise
with POSS becomes insignificant with smoothing
over 10 min (see appendix A), the distribution with
�ZDR,avg � ZDR, DSD � 0.19 dB is due to the physical vari-
ability. The reduction of the standard deviation with
temporal smoothing is more noticeable in radar mea-
surements, indicating its importance to reduce its mea-
surement noise. The distributions from radar measure-
ments are wider than their counterparts from DSDs,
particularly Figs. C1a and C1c. The difference of cor-
responding two distributions can be explained mostly
by the radar measurement noise because we assume the

FIG. B1. Multiparameter relationships after applying SIFT. The window size of SIFT is fixed at an hour and the averaging size
varies from 1 to 30 min. The relationship is nearly independent of the averaging size for an averaging time � 10 min.
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DSD variability seen by POSS and radar is identical
with 30-min smoothing. In addition, the set of DSD
data includes the physical variability more than that of
the radar measurement resulting from the difference in
the number of cases. Thus, the actual �(ZDR,avg � ZDR),obs

could be larger than the derived value.
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