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ABSTRACT

A radar polarimetric method for areal rainfall estimation is examined. In contrast to the polarimetric algorithm
based on specific differential phase KDP, the proposed method does not require rain-rate estimation from KDP

inside the area of interest, but it utilizes only values of total differential phase FDP on the areal contour. Even
if the radar reflectivity and differential phase data inside the area are corrupted by ground clutter, anomalous
propagation, biological scatterers, or hail contamination, reliable areal rainfall estimate is still possible, provided
that correct FDP estimates are available at a relatively small number of range locations in or at the periphery
of the contour of this area.

This concept of areal rainfall estimation has been tested on the Little Washita River watershed area in Oklahoma
that contains 42 densely located rain gauges. The areal rainfall estimates obtained from the polarimetric data
collected with the 10-cm Cimarron radar are in good agreement with the gauge data, with the standard error of
about 18%. This accuracy is better than that obtained with the algorithm utilizing areal averaging of pointwise
estimates of KDP inside the watershed area.

1. Introduction

Radar polarimetric methods for rainfall measurements
have received increasing attention in recent years. The
one based on the estimate of specific differential phase
KDP uses the relation

R 5 ,baKDP (1)

where R is rain rate (Sachidananda and Zrnić 1987;
Chandrasekar et al. 1990). This method has several ad-
vantages compared to the conventional method, which
utilizes radar reflectivity factor Z. Differential phase is
immune to radar miscalibration, microwave attenuation,
and partial beam blockage. It is less contaminated by
hail and is less affected by drop size distribution vari-
ations (Zrnić and Ryzhkov 1996).

The KDP estimate is usually obtained either as a slope
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of a least square linear fit of the total differential phase
FDP along a radial or as a slope of spatially filtered data
(Hubbert et al. 1993). In both cases the standard devi-
ation of the KDP estimate depends on the range-averaging
interval. To obtain acceptable accuracy of rain rate de-
rived from (1), this averaging interval has to be rela-
tively large. The optimal width of this averaging win-
dow is a compromise between the need to have low
estimation errors and the desire to reproduce correctly
the radial rainfall profile. Ryzhkov and Zrnić (1996)
suggest averaging in range over 17 successive gates if
Z . 40 dBZ, and 49 gates otherwise. For typical gate
spacing of 0.15 km, the effective radial resolution of
the polarimetric estimates of rainfall is about 2.5 km
for moderate and heavy rain and 7.3 km for light pre-
cipitation; this is considerably coarser than the radial
resolution of the conventional R(Z) rainfall estimator.
In addition, large changes of Z or FDP within the radar
resolution volume can lead to local biases in the KDP

field that are most pronounced at distances far from the
radar. Therefore, the polarimetric estimator R(KDP) dis-
torts the shape of an isolated rain cell more than the
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FIG. 1. Relative location of the radar and watershed area.

conventional R(Z) algorithm (Ryzhkov and Zrnić 1998).
Nonetheless, despite relatively low radial resolution and
local disturbances of the R(KDP) estimate in the presence
of strong beamfilling nonuniformities, the polarimetric
method based on KDP yields almost unbiased integrated
rainfall over areas with linear dimensions of a few tens
of kilometers.

Because KDP is a radial derivative of the total differ-
ential phase FDP (KDP 5 dFDP/dr), and the exponent b1

2

in (1) is close to unity, the rainfall integrated over the
radial interval (r1, r2) is approximately proportional to
the difference between FDP values at the ends of the
interval: FDP(r2) 2 FDP(r1). Similarly, areal rainfall is
determined by the values of differential phase on the
areal contour and, therefore, is not affected by distri-
bution of differential phase inside the area of interest.
This idea was first suggested by Raghavan and Chan-
drasekar (1994) as a useful technique with the potential
to obtain area–time integral rain accumulations. In this
paper, we examine this technique using data obtained
with the 10-cm-wavelength polarimetric radar and rain
gauges located in the Little Washita River watershed
area.

2. Theory

Assume that rain-rate R and specific differential phase
KDP are related, as specified by (1). Then, for an area
of interest (Fig. 1), the areal rainfall AR (i.e., rain rate
integrated over the area) can be expressed as

bAR 5 a[K (r, u)] r dr duE DP

S

b
dF (r, u)DP5 a r dr du, (2)E [ ]2drS

where r is range, and u is azimuth angle. Assuming that

KDP is constant for a given u, we can represent the in-
tegral AR as a sum of the contributions from individual
radials:

r b2j [F (r , u ) 2 F (r , u )]DP 2 j j DP 1j j
AR ø a Du r drO j E b[2(r 2 r )]j 2 j 1jr1j

a
12b ( j) b5 Du r [2(r 2 r )] [DF ] ,O j 0 j 2 j 1j DP2 j

(3)

where r1j and r2j are boundary points of the area along
the radial corresponding to the jth azimuth, r0j is the
middle point of the interval (r1j, r2j), DQ j is the azi-
muthal difference between two adjacent radials, and

is the differential phase difference between r1j and(j)DFDP

r2j along the jth radial. Note that the sum (3) is an
accurate approximation of the areal rainfall AR even if
KDP is not uniform along the radar beam because the
exponent b in (1) is close to unity (Sachidananda and
Zrnić 1987; Chandrasekar et al. 1990), and DFDP 5 2
# KDP(r) dr for an arbitrary radial profile of KDP. Thus,
integral rainfall depends only on boundary values of
total differential phase.

If the signal-to-noise ratio at one of the boundary
points, r1j or r2j, is close to or less than 0 dB, then FDP

has a wide distribution within the phase interval (0, p)
and cannot be used in (3). A similar problem occurs in
the case of differential phase aliasing [see Fig. 1 in
Ryzhkov and Zrnić (1995)], or if the differential phase
data are contaminated by ground clutter or anomalous
propagation [Fig. 10 in Zrnić and Ryzhkov (1996)] or
by biological scatterers such as insects and birds [Fig.
1 in Zrnić and Ryzhkov (1998)]. To avoid this problem,
editing and smoothing of the FDP data must be per-
formed prior to application of (3). After dealiasing the
FDP data (the unambiguous angle is 1808), estimation
of the standard deviation SD of FDP at each range lo-
cation is made. Normally, 17 consecutive range samples
are used to compute the SD(FDP), which is then assigned
to the center of a selected radial interval. If the SD(FDP)
exceeds a specified threshold (128 for the Cimarron ra-
dar), the data are classified as noise or ground clutter.
Otherwise, they are assigned to the ‘‘weather signal’’
category and are smoothed. The gaps between ‘‘signal’’
intervals, where noise or ground clutter are present, are
bridged by linear interpolation of the smoothed FDP

data. An example of original and smoothed FDP data
along a radial is in Fig. 2.

Statistical errors of the areal rainfall estimates for the
suggested [R(FDP)] and the original [R(KDP)] algorithms
are discussed in the appendix. It is shown that these
errors are of the same order for both methods; further-
more, the errors are small provided the watershed area
is large (.10 km along the range axis) and areal rainfall
accumulation is estimated over a period of 1 h or more.

3. Observations
To verify the suggested method, we have augmented

the dataset we have previously examined (Ryzhkov and
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FIG. 2. An example of the raw (thin line) and smoothed (thick
line) FDP data along a radial.

FIG. 3. Radar mean basin-averaged rain rate vs gauge mean basin-
averaged rain rate for 20 Oklahoma storms obtained using (top)
R(KDP) estimates [(4)] and (bottom) R(FDP) estimates [(3)]. The stars
denote ‘‘normal’’ cases, and the diamonds denote outliers.

TABLE 1. The biases and the fractional standard errors (FSE) in the areal rainfall estimates for the R(KDP) and R(FDP) algorithms.

Algo-
rithm
type

All cases

Bias (%) FSE (%)

‘‘Normal’’ cases

Bias (%) FSE (%)

Outliers

Bias (%) FSE (%)

R(KDP)
R(FDP)

212.7
28.2

25.1
18.3

26.1
24.1

10.2
10.7

232.4
219.9

47.0
30.8

Zrnić 1996) by five new cases. This combined set in-
cludes 20 Oklahoma storms observed with the Cimarron
polarimetric radar (10-cm wavelength; Zahrai and Zrnić
1993) over the test area in Central Oklahoma, where 42
closely spaced rain gauges are located. The set consists
of eight squall lines, four pure stratiform events, and
eight cases of stratiform rain with embedded convective
cells. Duration of single events varied between 1 and 7
h and radar update time was between 5 and 9 min. Radar
polarimetric data collected from the elevation of 0.58
were used for analysis. In the previous paper (Ryzhkov
and Zrnić 1996), we estimated the specific differential
phase KDP, converted the KDP data from a polar to a 1
km 3 1 km Cartesian grid, and computed total rainfall
over the test area and duration of the event using the
relation

R(KDP) 5 40.6 |KDP|0.866 sign(KDP). (4)

The mean rain rate was estimated for each storm event
as a gauge (radar) total areal accumulation divided by
a product of the watershed area and rain duration time.

In the proposed new procedure, we do not convert
radar data from polar to cartesian coordinates, but com-
pute areal rainfall directly from (3) using quality-con-
trolled and smoothed FDP data along the radials. Azi-
muthal spacing Duj between adjacent radials varies be-
tween 18 and 28 for different events. For areal rainfall
estimations from (3), we use the same coefficients (a 5
40.6 and b 5 0.866) as in the previous study.

4. Discussion

Figure 3 and Table 1 illustrate the performance of
both algorithms for 20 Oklahoma storms. In this figure
we have divided the whole dataset into two categories:
‘‘normal’’ cases (denoted by stars in Fig. 3, top) for
which the R(KDP) algorithm performs quite well, and
outliers (denoted by diamonds in Fig. 3, top) for which
this algorithm produces significantly larger biases in
rainfall. There are five outliers in the augmented dataset.
Two of these belong to the older part of the set that has
been previously examined (Ryzhkov and Zrnić 1996).
The outliers usually occur outside of the months typi-
cally associated with the heaviest convective rain in
Oklahoma (May–August). We recently observed that the
differential reflectivity ZDR is unusually low (for the
same radar reflectivity factor Z) if the R(KDP) algorithm
significantly underestimates rainfall, and it is unusually
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FIG. A1. Illustration of the difference between point (within the
interval Dl ) and path-integrated rainfall in the watershed area.

high in the opposite case (Ryzhkov and Zrnić 1996;
Fulton et al. 1999). This suggests that both biases are
related to the mean drop size.

It is evident from Fig. 3 (bottom) that the suggested
algorithm (3) outperforms the original R(KDP) algorithm,
especially for outlier cases. The mean biases and the
fractional standard errors (FSE) of the mean rain-rate
estimates computed for both methods are shown in Table
1. Computations have been made separately for the nor-
mal cases, outliers, and for the whole dataset. The mag-
nitude of negative bias decreases from 32.4% to 19.9%
and the FSE drops from 47.0% to 30.8% for outlier
cases if the relation R(FDP) is utilized instead of the
relation R(KDP). The corresponding improvement for the
whole dataset is from 212.7% to 28.2% in terms of
the mean bias and from 25.1% to 18.3% in terms of the
FSE.

The new version of the polarimetric algorithm for
areal rainfall estimation saves a considerable amount of
computations. First, computation of a specific differ-
ential phase KDP is not required. Second, only correctly
estimated values of total differential phase FDP along
the area contour are necessary to compute the areal rain-
fall. Radar data inside the area of interest might be con-
taminated by ground clutter, anomalous propagation,
presence of hail, or biological scatterers, but this does
not affect the performance of the suggested algorithm.
Strong azimuthal gradients of radar reflectivity factor Z
or differential phase FDP that can cause local distur-
bances of the KDP fields do not affect areal rainfall es-
timates on larger scales unless those disturbances lie on
the areal boundary. The integral method is valid even
for light rain where pointwise estimates of KDP are very
noisy. All these advantages contribute to the overall
improvement of the polarimetric estimate of the areal
rainfall over that from averages of pointwise KDP esti-
mates, although the dominant contributors change from
case to case.

Neither estimator R(KDP) nor R(FDP) is totally im-
mune to drop size distribution variations. That is why
outliers are not completely eliminated but are reduced
if the R(FDP) algorithm is used. The simplicity of the
suggested algorithm and data quality factors (mentioned
above) make it more robust than the original R(KDP)
method. To bring outliers into the fold, it appears that
other polarimetric variables (e.g., ZDR, Z) might need
to be included in the formulas that use differential phase
(Fulton et al. 1999).

The suggested algorithm is especially well suited for
estimating areal rainfall accumulation over watersheds
within the radar coverage area and for other hydrolog-
ical applications.

Acknowledgments. This research was partly supported
by the National Weather Service’s Office of Hydrology.
Mike Schmidt and Richard Wahkinney have maintained
and calibrated the Cimarron radar. We are thankful to
the anonymous reviewer who raised the issue of statis-

tical errors of areal rainfall estimation that inspired us
to write an appendix to address this matter.

APPENDIX

Statistical Errors of Areal Rainfall Estimation

Areal rainfall accumulation ARA is proportional to
the sum of areal rain integrals AR(m) computed from
each radar scan performed during an observation period

M

(m)ARA 5 AR Dt, (A1)O
m51

where Dt is an update time, M is a number of consecutive
radar scans, and AR is defined by (3). Consequently,
the mean rain-rate ^R& is equal to the ratio ARA/ST,
where S is the area of watershed, and T 5 MDt is total
observation time.

Let’s assume for the sake of simplicity that rain rate
is constant over the whole area during the time of ob-
servation, and the exponent b in (1)–(3) is equal to unity.
We assume also the simplified geometry of the problem
shown in Fig. A1 (rectangular shape of the area with
radar radials almost parallel to two of the area’s bound-
aries). These assumptions allow quantitative comparison
between pointwise and integral rainfall measurements.
Although not precise, the comparison can show inter-
relation and trade-off among the variables that affect
the estimates. According to (3), for any radar scan the
areal rain integral AR is a sum of contributions from
each radial of path-integrated rainfall estimates LR(j):

J

( j)AR 5 LR . (A2)O
j51

The path-integrated rainfall can be expressed as
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a
LR 5 DxDF , (A3)DP2

if the R(FDP) algorithm is used [see (3)], or as
I

( j)LR 5 aDxDlK , (A4)O DP
i51

if the traditional R(KDP) algorithm is used. In the latter
case rain rates are estimated directly from KDP for each
ith interval Dl along the radial. In (A3) and (A4) Dx 5
r0Du 5 X/J; Dl 5 L/I (Fig. A1).

The path-integrated rainfall LR varies because of sta-
tistical variations of the differential phase difference
DFDP or specific differential phase KDP. It can be easily
shown from (A1) and (A2) that the standard deviation
of the areal rainfall accumulation ARA (or the mean
rain rate ^R&) is proportional to the standard deviation
of the LR estimate [SD(LR)]:

J SD(LR)
SD(^R&) 5 , (A5)!M S

SD(LR) for the R(FDP) algorithm (hereinafter SD1) can
be derived from (A3) as

a
SD 5 DxSD(F ), (A6)1 DPÏ2

and SD(LR) for the R(KDP) algorithm (hereinafter SD2)
can be written as

SD2 5 aDxDl ISD(KDP).Ï (A7)

SD(KDP) is proportional to SD(FDP) (Ryzhkov and Zrnić
1996; Gorgucci et al. 1999):

1/2(3) SD(F )DPSD(K ) 5 DN k 1, (A8)DP 1/2Dl(DN )

where DN 5 N/I is a number of range gates in the interval
Dl, and N is a total number of gates in the interval L.
Therefore, the ratio SD 2 /SD1 is equal to I(6/N )1/2 ;
that is, it is directly proportional to the number of sub-
intervals I or inversely proportional to the spatial res-
olution of the KDP estimates along the radial. If rain is
uniform along the radial direction, then it is advanta-
geous to use coarser radial resolution to reduce the sta-
tistical error in the areal rainfall estimate provided the
traditional R(KDP) algorithm is applied. In reality, how-
ever, rain is nonuniform and this imposes a limitation
on the minimal number I. In our particular case L is
about 30 km, range gate spacing is 0.24 km for most
cases examined, DN 5 16 if Z . 40 dBZ, and DN 5
48 otherwise. Thus, the ratio SD2/SD1 is about 0.6 for
light precipitation (Z , 40 dBZ) and 1.7 for moderate
or heavy precipitation (Z . 40 dBZ). Overall, the sta-
tistical errors in the areal rainfall estimation for both
methods are comparable because the majority of the
examined rain events contain both high-reflectivity and
low-reflectivity components.

As can be deduced from (A5)–(A8), the magnitude
of the statistical error of the mean rain rate ^R& is quite
small given the size of the watershed area and relatively
large number of consecutive radar scans used for the
areal rainfall computation. Indeed, combining (A5) and
(A6) we can obtain the following expression for SD(^R&)
if the proposed R(FDP) algorithm is used:

aSD(F )DPSD(^R&) 5 . (A9)
1/2L(2MJ )

The number J is determined by the size X of the wa-
tershed area (Fig. A1) and the angular resolution Du.
For X 5 40 km the parameter J is about 34 if Du 5 18
and is about 17 if Du 5 28. The number of radar scans
M is determined by the storm duration (1–7 h in our
dataset) and the update time (6 min on average). Thus,
M varies from 10 to 70. According to Ryzhkov and
Zrnić (1996) the standard deviation of the FDP estimate
is about 28–48 for the Cimarron radar (if no smoothing
of the raw data is performed). Even in the worst sce-
nario, when no preliminary smoothing of the FDP data
is made [and SD(FDP) 5 48], and M and J are minimal
(10 and 17, respectively), the standard error of the mean
rain-rate estimate is only about 0.3 mm h21. Preliminary
processing and smoothing of the raw differential phase
data (that were actually carried out in our data analysis)
further reduces the statistical error in the mean rain rate
or the areal rainfall estimation. From this we can con-
clude that the differences in the estimates of the mean
rain rates obtained from the radar and gauges are mainly
due to biases caused by drop size distribution variations
rather than statistical errors even for rain rates as small
as 2 mm h21 (Fig. 3). The assumption of rain uniformity
within the test area is fairly realistic for stratiform light
precipitation but might not hold for convective storms.
In the latter case the statistical error of the areal mean
rain rate will be higher.
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